Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uranium, oxidation state speciation

Especially interesting in a discussion of radionuclide speciation is the behaviour of the transuranium elements neptunium, plutonium, americium and curium. These form part of the actinide series of elements which resemble the lanthanides in that electrons are progressively added to the 5f instead of the 4f orbital electron shell. The effective shielding of these 5f electrons is less than for the 4f electrons of the lanthanides and the differences in energy between adjacent shells is also smaller, with the result that the actinide elements tend to display more complex chemical properties than the lanthanides, especially in relation to their oxidation-reduction behaviour (Bagnall, 1972). The effect is especially noticeable in the case of uranium, neptunium and plutonium, the last of which has the unique feature that four oxidation states Pum, Pu, Puv and Pu are... [Pg.360]

A variety of methods have been used to characterize the solubility-limiting radionuclide solids and the nature of sorbed species at the solid/water interface in experimental studies. Electron microscopy and standard X-ray diffraction techniques can be used to identify some of the solids from precipitation experiments. X-ray absorption spectroscopy (XAS) can be used to obtain structural information on solids and is particularly useful for investigating noncrystalline and polymeric actinide compounds that cannot be characterized by X-ray diffraction analysis (Silva and Nitsche, 1995). X-ray absorption near edge spectroscopy (XANES) can provide information about the oxidation state and local structure of actinides in solution, solids, or at the solution/ solid interface. For example, Bertsch et al. (1994) used this technique to investigate uranium speciation in soils and sediments at uranium processing facilities. Many of the surface spectroscopic techniques have been reviewed recently by Bertsch and Hunter (2001) and Brown et al. (1999). Specihc recent applications of the spectroscopic techniques to radionuclides are described by Runde et al. (2002b). Rai and co-workers have carried out a number of experimental studies of the solubility and speciation of plutonium, neptunium, americium, and uranium that illustrate combinations of various solution and spectroscopic techniques (Rai et al, 1980, 1997, 1998 Felmy et al, 1989, 1990 Xia et al., 2001). [Pg.4758]

Oxidation state. Differences among the potentials of the redox couples of the actinides account for much of the differences in their speciation and environmental transport. Detailed information about the redox potentials for these couples can be found in numerous references (e.g., Hobart, 1990 Silva and Nitsche, 1995 Runde, 2002). This information is not repeated here, but a few general points should be made. Important oxidation states for the actinides under environmental conditions are described in Table 4. Depending on the actinide, the potentials of the III/IV, IV/V, V/VI, and/or IV/VI redox couples can be important under near-surface environmental conditions. When the redox potentials between oxidation states are sufficiently different, then one or two redox states will predominate this is the case for uranium, neptunium, and americium (Runde, 2002). The behavior of uranium is controlled by the predominance of U(VI) species under... [Pg.4768]

Baston et al. [60] studied the samples of ionic liquid after the anodization of uranium metal in [EMIMjCl using the U Lm-edge EXAFS to establish both the oxidation state and the speciation of uranium in the ionic liquid. This was part of an ongoing study to replace high-temperature melts, such as LiQ KQ [61], with ionic liquids. Although it was expected that, when anodized, the uranium would be in the +3 oxidation state, electrochemistry showed that the uranium is actually in a mixture of oxidation states. The EXAFS of the solution showed an edge jump at 17166.6 eV, indicating a mixture of uranium(IV) and uranium(VI). The EXAFS data and pseudo-radial distribution functions for the anodized uranium in [EMIMjCl are shown in Eig. 4.1-12. [Pg.195]


See other pages where Uranium, oxidation state speciation is mentioned: [Pg.323]    [Pg.144]    [Pg.343]    [Pg.144]    [Pg.335]    [Pg.323]    [Pg.763]    [Pg.4777]    [Pg.144]    [Pg.104]    [Pg.41]    [Pg.1039]    [Pg.236]    [Pg.112]    [Pg.147]   
See also in sourсe #XX -- [ Pg.370 ]




SEARCH



Oxidation uranium oxides

Uranium oxidation states

Uranium, speciation

© 2024 chempedia.info