Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unsupervised chemometric analysis

In complex systems where the number of groups to be separated during classification becomes larger, the performance of simple unsupervised methods (Section 3) degrades, requiring the use of more sophisticated supervised chemometric techniques. Additionally, in fields such a process NMR where there is a need for quantifying a component, the use of supervised methods becomes necessary. The different supervised methods described in the sections below have all been utilized in the chemometric analysis of NMR data for classification and/or quantitation. Examples utilizing these different techniques are discussed in Section 5. [Pg.60]

A hypercube consists of numerous spectra, enabling unsupervised chemometric and statistical analysis. Under the right circumstances, this provides an alternative way to perform quantitative analysis, which requires no calibration set or model development. [Pg.379]

While principal components models are used mostly in an unsupervised or exploratory mode, models based on canonical variates are often applied in a supervisory way for the prediction of biological activities from chemical, physicochemical or other biological parameters. In this section we discuss briefly the methods of linear discriminant analysis (LDA) and canonical correlation analysis (CCA). Although there has been an early awareness of these methods in QSAR [7,50], they have not been widely accepted. More recently they have been superseded by the successful introduction of partial least squares analysis (PLS) in QSAR. Nevertheless, the early pattern recognition techniques have prepared the minds for the introduction of modem chemometric approaches. [Pg.408]

In chemometrics we are very often dealing not with individual signals, but with sets of signals. Sets of signals are used for calibration purposes, to solve supervised and unsupervised classification problems, in mixture analysis etc. All these chemometrical techniques require uniform data presentation. The data must be organized in a matrix, i.e. for the different objects the same variables have to be considered or, in other words, each object is characterized by a signal (e.g. a spectrum). Only if all the objects are represented in the same parameter space, it is possible to apply chemometrics techniques to compare them. Consider for instance two samples of mineral water. If for one of them, the calcium and sulphate concentrations are measured, but for the second one, the pH values and the PAH s concentrations are available, there is no way of comparing these two samples. This comparison can only be done in the case, when for both samples the same sets of measurements are performed, e.g. for both samples, the pH values, and the calcium and sulphate concentrations are determined. Only in that case, each sample can be represented as a point in the three-dimensional parameter space and their mutual distances can be considered measures of similarity. [Pg.165]

These various chemometrics methods are used in those works, according to the aim of the studies. Generally speaking, the chemometrics methods can be divided into two types unsupervised and supervised methods(Mariey et al., 2001). The objective of unsupervised methods is to extrapolate the odor fingerprinting data without a prior knowledge about the bacteria studied. Principal component analysis (PCA) and Hierarchical cluster analysis (HCA) are major examples of unsupervised methods. Supervised methods, on the other hand, require prior knowledge of the sample identity. With a set of well-characterized samples, a model can be trained so that it can predict the identity of unknown samples. Discriminant analysis (DA) and artificial neural network (ANN) analysis are major examples of supervised methods. [Pg.206]

After applying the appropriate pre-processing, different chemometric techniques can be applied according to the aim of the study. Pattern recognition is one of the chemometric methods most used in analytical chemistry and this is true for separations data. Pattern recognition can be generally divided into two classes exploratory data analysis and unsupervised and supervised pattern recognition (Otto, 2007 Brereton, 2007). [Pg.319]

Statistical Analysis and Reporting Methods for statistical analysis of metabonomics data sets include a variety of supervised and unsupervised multivariate techniques (Holmes et al., 2000) as well as univariate analysis strategies. These chemometric approaches have been recently reviewed (Holmes and Antti, 2002 Robertson et al., 2007), and a thorough discussion of these is outside the scope of this chapter. Perhaps the best known of the unsupervised multivariate techniques is principle component analysis (PCA) and is widely... [Pg.712]

Mass spectrometry and chemometric methods cover very diverse fields Different origin of enzymes can be disclosed with LC-MS and multivariate analysis [45], Pyrolysis mass spectrometry and chemometrics have been applied for quality control of paints [46] and food analysis [47], Olive oils can be classified by analyzing volatile organic hydrocarbons (of benzene type) with headspace-mass spectrometry and CA as well as PC A [48], Differentiation and classification of wines can similarly be solved with headspace-mass spectrometry using unsupervised and supervised principal component analyses (SIMCA = soft independent modeling of class analogy) [49], Early prediction of wheat quality is possible using mass spectrometry and multivariate data analysis [50],... [Pg.163]

In contrast to exploratory data analysis that mostly uses unsupervised learning, supervised learning involves developing models from data that are paired with a desired set of outcomes, which are used to guide the estimation of the models. In chemometrics. [Pg.360]


See other pages where Unsupervised chemometric analysis is mentioned: [Pg.382]    [Pg.382]    [Pg.448]    [Pg.42]    [Pg.55]    [Pg.128]    [Pg.254]    [Pg.417]    [Pg.119]    [Pg.221]    [Pg.155]    [Pg.123]    [Pg.180]    [Pg.129]    [Pg.217]    [Pg.5]    [Pg.365]    [Pg.344]   
See also in sourсe #XX -- [ Pg.55 , Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 ]




SEARCH



Chemometric

Chemometric analysis

Chemometrics

Chemometrics analysis

Unsupervised

Unsupervised Analysis

© 2024 chempedia.info