Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unsaturated enzymic reduction

This pathway (the microsomal system ) elongates saturated and unsaturated fatty acyl-CoAs (from Cjg upward) by two carbons, using malonyl-CoA as acetyl donor and NADPH as reductant, and is catalyzed by the microsomal fatty acid elongase system of enzymes (Figure 21-5). Elongation of stearyl-CoA in brain increases rapidly during myehnation in order to provide C22 and C24 fatty acids for sphingoEpids. [Pg.177]

Kurata A, T Kurihara, H Kamachi, N Esaki (2005) 2-haloacrylate reductase a novel enzyme of the medium-chain dehydrogenase/reductase superfamily that catalyzes the reduction of carbon-carbon double bond of unsaturated organohalogen compounds. J Biol Chem 280 20286-20291. [Pg.167]

An unusual reaction was been observed in the reaction of old yellow enzyme with a,(3-unsat-urated ketones. A dismutation took place under aerobic or anaerobic conditions, with the formation from cyclohex-l-keto-2-ene of the corresponding phenol and cyclohexanone, and an analogous reaction from representative cyclodec-3-keto-4-enes—putatively by hydride-ion transfer (Vaz et al. 1995). Reduction of the double bond in a,p-unsaturated ketones has been observed, and the enone reductases from Saccharomyces cerevisiae have been purified and characterized. They are able to carry out reduction of the C=C bonds in aliphatic aldehydes and ketones, and ring double bonds in cyclohexenones (Wanner and Tressel 1998). Reductions of steroid l,4-diene-3-ones can be mediated by the related old yellow enzyme and pentaerythritol tetranitrate reductase, for example, androsta-A -3,17-dione to androsta-A -3,17-dione (Vaz etal. 1995) and prednisone to pregna-A -17a, 20-diol-3,ll,20-trione (Barna et al. 2001) respectively. [Pg.339]

The enantiomeric reduction of 2-nitro-l-phenylprop-l-ene has been studied in a range of Gram-positive organisms including strains of Rhodococcus rhodochrous (Sakai et al. 1985). The enantiomeric purity of the product depended on the strain used, the length of cultivation, and the maintenance of a low pH that is consistent with the later results of Meah and Massey (2000). It has been shown that an NADPH-linked reduction of a,p-unsaturated nitro compounds may also be accomplished by old yellow enzyme via the flcf-nitro form (Meah and Massey 2000). This is formally analogous to the reduction and dismutation of cyclic enones by the same enzyme (Vaz et al. 1995), and the reductive fission of nitrate esters by an enzyme homologous to the old yellow enzyme from Saccharomyces cerevisiae (Snape et al. 1997). [Pg.586]

Enoate reductase reduces a,/3-unsaturated carboxylate ions in an NADPH-dependent reaction to saturated carboxylated anions. Useful chiral synthons can be conveniently prepared by the asymmetric reduction of a triply substituted C—C bond by the action of enoate reductase, when the double bond is activated with strongly polarizing groups [22]. Enoate reductases are not commercially available as isolated enzymes therefore, microorganisms such as baker s yeast or Clostridium sp. containing enoate reductase are used to carry out the reduction reaction. [Pg.234]

Very few enzyme-catalysed reactions involving the reduction of alkenes have achieved any degree of recognition in synthetic organic chemistry. Indeed the only transformation of note involves the reduction of a, (3-unsaturated aldehydes and ketones. For example, bakers yeast reduction of (Z)-2-bromo-3-phenylprop-2-enal yields (S)-2-bromo-3-phenylpropanol in practically quantitative yield (99 % ee) when a resin is employed to control substrate concen-tration[50]. Similarly (Z)-3-bromo-4-phenylbut-3-en-2-one yields 2(5), 3(,S)-3-bromo-4-phenylbutan-2-ol (80% yield, >95% ee)[51]. Carbon-carbon double bond reductases can be isolated one such enzyme from bakers yeast catalyses the reduction of enones of the type Ar—CH = C(CH3)—COCH3 to the corresponding (S)-ketones in almost quantitative yields and very high enantiomeric excesses[52]. [Pg.15]

Aldehydes and Ketones. Many metabolic routes are possible, including both oxidation and reduction. However, oxidations are more common. Aldehydes are very susceptible to oxidation, which is catalyzed by various enzymes including aldehyde oxidase and aldehyde dehydrogenase this oxidation yields a carboxylic acid. Ketones, on the other hand, tend to be stable to oxidation. Conversely, aldehydes are seldom metabolized by reduction. Ketones, however, frequently undergo reduction to a secondary alcohol this is particularly true for a,P-unsaturated ketones. [Pg.151]

As depicted in Table 2.2.7.2, a,P-unsaturated alkenones possessing the Z configuration are only poorly accepted by the enzymes tested. In addition, with these substrates only low enantioselectivity was observed for the reduction step. [Pg.400]

Other types of reduction catalyzed by non-microsomal enzymes have also been described for xenobiotics. Thus, reduction of aldehydes and ketones may be carried out either by alcohol dehydrogenase or NADPH-dependent cytosolic reductases present in the liver. Sulfoxides and sulfides may be reduced by cytosolic enzymes, in the latter case involving glutathione and glutathione reductase. Double bonds in unsaturated compounds and epoxides may also be reduced. Metals, such as pentavalent arsenic, can also be reduced. [Pg.98]


See other pages where Unsaturated enzymic reduction is mentioned: [Pg.5]    [Pg.36]    [Pg.348]    [Pg.826]    [Pg.973]    [Pg.975]    [Pg.976]    [Pg.537]    [Pg.327]    [Pg.118]    [Pg.19]    [Pg.154]    [Pg.199]    [Pg.171]    [Pg.250]    [Pg.806]    [Pg.40]    [Pg.526]    [Pg.295]    [Pg.276]    [Pg.295]    [Pg.15]    [Pg.284]    [Pg.92]    [Pg.963]    [Pg.963]    [Pg.807]    [Pg.162]    [Pg.310]    [Pg.1334]   
See also in sourсe #XX -- [ Pg.8 , Pg.205 ]




SEARCH



Reduction 3,7-unsaturated

Reduction enzymes

Reduction enzymic

Reductive enzymes

© 2024 chempedia.info