Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unimolecular reaction measurement

Detailed analyses of the above experiments suggest that the apparent steps in k E) may not arise from quantized transition state energy levels [110.111]. Transition state models used to interpret the ketene and acetaldehyde dissociation experiments are not consistent with the results of high-level ab initio calculations [110.111]. The steps observed for NO2 dissociation may originate from the opening of electronically excited dissociation chaimels [107.108]. It is also of interest that RRKM-like steps in k E) are not found from detailed quantum dynamical calculations of unimolecular dissociation [91.101.102.112]. More studies are needed of unimolecular reactions near tln-eshold to detennine whether tiiere are actual quantized transition states and steps in k E) and, if not, what is the origin of the apparent steps in the above measurements of k E). [Pg.1035]

Detailed reaction dynamics not only require that reagents be simple but also that these remain isolated from random external perturbations. Theory can accommodate that condition easily. Experiments have used one of three strategies. (/) Molecules ia a gas at low pressure can be taken to be isolated for the short time between coUisions. Unimolecular reactions such as photodissociation or isomerization iaduced by photon absorption can sometimes be studied between coUisions. (2) Molecular beams can be produced so that motion is not random. Molecules have a nonzero velocity ia one direction and almost zero velocity ia perpendicular directions. Not only does this reduce coUisions, it also aUows bimolecular iateractions to be studied ia intersecting beams and iacreases the detail with which unimolecular processes that can be studied, because beams facUitate dozens of refined measurement techniques. (J) Means have been found to trap molecules, isolate them, and keep them motionless at a predetermined position ia space (11). Thus far, effort has been directed toward just manipulating the molecules, but the future is bright for exploiting the isolated molecules for kinetic and dynamic studies. [Pg.515]

Note that if we nevertheless write the rate equation of a unimolecular reaction in the form of a first order reaction, r = k[A], and perform kinetic measurements over a... [Pg.107]

While all rates of these unimolecular reactions can be fit quantitatively by LH expressions. Equation 11, the heats of adsorption determined from the temperature dependence of the adsorption equillb-rium constant. Equation 14, do not agree with the measured reaction activation energy except for NH3 where = 16 2 kcal/mole. NO... [Pg.181]

The effects of QMT at cryogenic temperatures can be quite spectacular. At extremely low temperatures, even very small energy barriers can be prohibitive for classical overbarrier reactions. For example, if = Ikcal/mol and A has a conventional value of 10 s for a unimolecular reaction of a molecule, Arrhenius theory would predict k = 2 X 10 ° s , or a half-life of 114 years at lOK. But, many tunneling reactions of reactive intermediates have been observed to occur at measurable rates at this and lower temperatures, even when energy barriers are considerably higher. Reactive intermediates can, thus, still be quite elusive at extremely low temperatures if protected only by small and narrow energy barriers. [Pg.421]

Stability, as measured by the tendency to undergo unimolecular reactions or to react with identical... [Pg.6]

Intramolecular general base catalysed reactions (Section II, Tables E-G) present less difficulty. A classification similar to that of Table I is used, but since the electrophilic centre of interest is always a proton substantial differences between different general bases are not expected. This section (unlike Section I, which contains exclusively unimolecular reactions) contains mostly bimolecular reactions (e.g. the hydrolysis of aspirin [4]). Where these are hydrolysis reactions, calculation of the EM still involves comparison of a first order with a second order rate constant, because the order with respect to solvent is not measurable. The intermolecular processes involved are in fact termolecular reactions (e.g. [5]), and in those cases where solvent is not involved directly in the reaction, as in the general base catalysed aminolysis of esters, the calculation of the EM requires the comparison of second and third order rate constants. [Pg.223]

The thermal isomerization of cyclopropane to propylene is perhaps the most important single example of a unimolecular reaction. This system has been studied by numerous workers. Following the work of Trautz and Winkler (1922), who showed that the reaction was first order and had an energy of activation of about 63,900 cal mole measured in the temperature range 550-650° C, Chambers and Kistiakowsky (1934) studied the reaction in greater detail and with higher precision from 469-519° C. They confirmed that it was first order and, for the reaction at its high-pressure limit, obtained the Arrhenius equation... [Pg.148]

A major source of acceleration in enzymic reactions is approximation, that is to say, the bringing together of two or more reactants in the active site. Once the reagents are in contact, the subsequent reaction is intra- rather than intermolecular. Comparisons of the rates of intermolecular and intramolecular reactions are, however, difficult because the rate constants for bimolecular reactions have the units of M "1 s-1, whereas rate constants for unimolecular reactions have the units of s l. The best one can do in comparing them is to state the molarity at which the reactants would have to be present in the bimolecular reaction to achieve the rate of the unimolecular process when the effective molarity is large-say 1000 M or more-one has some measure of the power of approximation to accelerate chemical reaction. [Pg.27]

Rates of hydrolysis of /)-nitrophenyl-P-D-glucopyranoside by P-glucosidase, an irreversible unimolecular reaction, were measured at several concentrations of the substrate. The initial reaction rates were obtained as given in Table 3.2. Determine the kinetic parameters of this enzyme reaction. [Pg.38]

The measured rate constant for unimolecular reactions, association reactions, and certain bi-molecular reactions to be considered in the next section can have a complex dependence on total pressure, in addition to the strong temperature dependence of Eq. 9.83. This section introduces the theory of the pressure-dependence of the rate constant kmj the same theory follows to yield the pressure dependence of kassoc. Because kuni and kassoc are related by the equilibrium constant, which is independent of pressure, for a given reaction... [Pg.387]

In the traditional surface science approach the surface chemistry and physics are examined in a UHV chamber at reactant pressures (and sometimes surface temperatures) that are normally far from the actual conditions of the process being investigated (catalysis, CVD, etching, etc.). This so-called pressure gap has been the subject of much discussion and debate for surface science studies of heterogeneous catalysis, and most of the critical issues are also relevant to the study of microelectronic systems. By going to lower pressures and temperatures, it is sometimes possible to isolate reaction intermediates and perform a stepwise study of a surface chemical mechanism. Reaction kinetics (particularly unimolecular kinetics) measured at low pressures often extrapolate very well to real-world conditions. [Pg.475]

The transient nature of the cavitation event precludes conventional measurement of the conditions generated during bubble collapse. Chemical reactions themselves, however, can be used to probe reaction conditions. The effective temperature realized by the collapse of clouds of cavitating bubbles can be determined by the use of competing unimolecular reactions whose rate dependencies on temperature have already been measured. The sonochemical ligand substitutions of volatile metal carbonyls were used as... [Pg.1525]

Most of the studies of ions formed by charge transfer have been concentrated on the unimolecular reactions of M+ ions formed in well-defined internal-energy states (e.g., fragmentation patterns6) and more recently have been concerned with rate-coefficient measurements.118 Some work has also been reported on consecutive ion-molecule reactions of M+ ions produced in well-defined internal states (mostly... [Pg.105]

In contrast, applying frontier orbital theory to unimolecular reactions like electrocyclic reactions and sigmatropic rearrangements is inherently contrived, since we have artificially to treat a single molecule as having separate components, in order to have any frontier orbitals at all. Furthermore, frontier orbital theory does not explain why the barrier to forbidden reactions is so high—whenever it has been measured, the transition structure for the forbidden pathway has been 40 kJ mol-1 or more above that for the allowed pathway. Frontier orbital theory is much better at dealing with small differences in reactivity. [Pg.34]

The very similar Arrhenius parameters measured for methylsilacyclobutane 14 suggest that 14 also decomposes by a multistep biradical mechanism similar to 1 and not by a unimolecular reaction as was originally proposed22. [Pg.863]

Experimental rate constants, kinetic isotope effects and chemical branching ratios for the CF2CFCICH3-do, -d, -d2, and -d2 molecules have been experimentally measured and interpreted using statistical unimolecular reaction rate theory.52 The structural properties of the transition states needed for the theory have been calculated by DFT at the B3PW91 /6-31 G(d,p/) level. [Pg.315]

As mentioned earlier, few absolute kinetic data exist for unimolecular reactions of silenes, largely because most of the known silene rearrangements occur under high temperature pyrolytic conditions and are difficult to measure directly8,10,12. [Pg.951]

The most important aspect of the chemistry of the furan ring in 5-hydroxymethylfurfural is its scission under the influence of acidic reagents. In the very earliest work on the acidic degradation of hexoses, levulinic and formic acids were obtained which were shown subsequently to have arisen from the decomposition of 5-hydroxymethylfurfural. This degradation was studied by Teunissen53 87 who measured its rate and showed it to be a unimolecular reaction. He proposed the scheme represented by XLIV-XLIX for the conversion of 5-hydroxymethyl-... [Pg.105]

It has been mentioned that phase space theory, i.e. assuming a loose transition state, has been able to explain the translational energy releases in the decomposition of certain ion—molecule collision complexes [485] and in some unimolecular decompositions measured by PIPECO (see Sect. 8.2). There is a larger number of translational energy releases from PIPECO and a body of data as to translational energy releases in source reactions of positive ions formed by El [162, 310] (Sect. 8.3.1) with which the predictions of phase space theory are in poor agreement. The predicted energy releases are too low. [Pg.152]


See other pages where Unimolecular reaction measurement is mentioned: [Pg.1349]    [Pg.256]    [Pg.220]    [Pg.43]    [Pg.4]    [Pg.8]    [Pg.10]    [Pg.11]    [Pg.13]    [Pg.14]    [Pg.14]    [Pg.19]    [Pg.22]    [Pg.102]    [Pg.105]    [Pg.87]    [Pg.428]    [Pg.239]    [Pg.160]    [Pg.108]    [Pg.149]    [Pg.94]    [Pg.54]    [Pg.256]    [Pg.369]    [Pg.877]    [Pg.213]    [Pg.54]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Reaction measurements

Reaction measuring

Unimolecular reaction

© 2024 chempedia.info