Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uncontrolled ordering

In order to operate a process facility in a safe and efficient manner, it is essential to be able to control the process at a desired state or sequence of states. This goal is usually achieved by implementing control strategies on a broad array of hardware and software. The state of a process is characterized by specific values for a relevant set of variables, eg, temperatures, flows, pressures, compositions, etc. Both external and internal conditions, classified as uncontrollable or controllable, affect the state. Controllable conditions may be further classified as controlled, manipulated, or not controlled. Excellent overviews of the basic concepts of process control are available (1 6). [Pg.60]

Particulate matter is the principal air pollutant emitted from ammonium sulfate plants. Most of the particulates are found in the gaseous exhaust of the dryers. Uncontrolled discharges of particulates may be of the order of 23 kg/t from rotary dryers and 109 kg/t from fluidized bed dryers. Ammonia storage tanks can release ammonia, and there may be fugitive losses of ammonia from process equipment. [Pg.65]

We have reviewed the electronic properties of CNTs probed by magnetic measurements. MW- and SWCNTs can individually be produced, however, the parameters of CNTs are uncontrollable, such as diameter, length, chirality and so on, at the present stage. Since the features of CNTs may depend on the synthesis and purification methods, some different experimental observation on CNT properties has been reported. It is important, however, that most of papers have clarified metallic CNTs are actually present in both MW- and SWCNTs. The characteristic of CESR of SWCNTs is different from that on non-annealed MWCNTs, but rather similar to that on annealed multi-walled ones. The relationship of the electronic properties between SW- and MWCNTs has not yet been fully understood. The accurate control in parameter of CNTs is necessary in order to discuss more details of CNTs in future. [Pg.86]

Furthermore, one can infer quantitatively from the data in Fig. 13 that the quantum system cannot reach the maximum herringbone ordering even at extremely low temperatures the quantum hbrations depress the saturation value by 10%. In Fig. 13, the order parameter and total energy as obtained from the full quantum simulation are compared with standard approximate theories valid for low and high temperatures. One can clearly see how the quasi classical Feynman-Hibbs curve matches the exact quantum data above 30 K. However, just below the phase transition, this second-order approximation in the quantum fluctuations fails and yields uncontrolled estimates just below the point of failure it gives classical values for the order parameter and the herringbone ordering even vanishes below... [Pg.116]

Randomization refers to the process of assigning subjects by chance to treatments. This eliminates known and unknown sources of bias that could interfere with accurate interpretation of the study results. The main problem that randomization is intended to prevent is bias in subject selection. Without randomization, investigators might consciously or subconsciously select subjects to receive the active treatment, which, they believe, are most likely to respond. History shows that uncontrolled studies are much more likely to provide exaggerated support in favor of the effectiveness of a treatment than properly controlled trials (Pocock, 1983). Therefore, whenever possible, randomization should be used in order to help insure a fair and unbiased evaluation of the intervention under study. [Pg.238]

Generally, the temperature changes with time or, equivalently, with distance from the reactor inlet (for flow reactors). This change is usually controlled well in reaction calorimeters but can become uncontrolled in other conventional laboratory flow or (semi)batch reactors. The balance equations of a batch reactor for a single reaction of a-th order kinetics are given by ... [Pg.319]

Cohen and Coon observed that the response of most uncontrolled (controller disconnected) processes to a step change in the manipulated variable is a sigmoidally shaped curve. This can be modelled approximately by a first-order system with time lag Tl, as given by the intersection of the tangent through the inflection point with the time axis (Fig. 2.34). The theoretical values of the controller settings obtained by the analysis of this system are summarised in Table 2.2. The model parameters for a step change A to be used with this table are calculated as follows... [Pg.103]

In order to avoid such uncontrolled collisional activation, we chose to use apparatus which is closely related to the ion-source reaction chambers developed for thermal ion-molecule equilibria (see preceding Section A). In fact, sources like those shown in Figures 4 and 7 are well suited for providing thermalized ions however they provide somewhat low ion intensities, typically some 50,000 counts/s of a given major ion in a mass spectrum after mass analysis. However, such intensities are completely sufficient for CID threshold measurements and the source... [Pg.277]

In the preparation of a series of substituted phenylethylenediamines, it is essential to add the reagents to an aromatic solvent at 30-80°C in the order aniline, then aluminium chloride, then ethylenimine to prevent uncontrollable exothermic reaction. [Pg.328]

Gold has been used for many years as a minority carrier lifeline controller in Si. As such, it is introduced in a controlled manner, usually by diffusion into transistor structures to decrease the carrier lifetime in the base region in order to increase the switching speed (Ravi, 1981). Conversely, the uncontrolled presence of Au is clearly deleterious to the performance of devices, both because of the increased recombination within the structure and the increase of pipe defects, which can cause shorting of the device. These pipe defects consist of clusters of metallic impurities at dislocations bounding epitaxial stacking faults. [Pg.82]

A 2-value smaller than 1 means that there is an excess of fuel in the mixture. In this case the air/fuel mixture is called rich. If more air is in the mixture than needed for a complete fuel combustion (2 > 1) the term lean mixture is used. Ideally the combustion is complete at 2 = 1. Real fuel cannot be combusted without an increase in CO and soot at 2-values smaller than 1.05. Due to changing operation conditions, for example a soiled burner, wear of the nozzle or leaky flaps, change of gas quality or changes of temperature and air pressure in the ambient atmosphere, the air/fuel ratio and thus flue gas composition can change over time. In order to minimize the risk of intoxication (see also chapter 5333), explosion and pollution real (uncontrolled) fuel burners are adjusted to operate far beyond this limit in the excess (lean mixture) region. However, unfortunately effi-... [Pg.150]

A part of the test plan must include testing for the consequences of equipment malfunction, deviations in process conditions, and human error. Bench-scale equipment, for example, the RC1, is quite suitable for such experiments. By analysis of the process, critical conditions can be defined, which then need to be tested in order to be able to proceed safely from the laboratory to pilot plant studies. In testing abnormal conditions or process deviations, caution is required to assure that no uncontrollable hazard is created in the laboratory. Typical deviations, including impact on the process, are discussed in the following paragraph. [Pg.134]

Fired heaters are extensively used in the oil and gas industry to process the raw materials into usable products in a variety of processes. Fuel gas is normally used to fire the units which heat process fluids. Control of the burner system is critical in order to avoid firebox explosions and uncontrolled heater fires due to malfunctions and deterioration of the heat transfer tubes. Microprocessor computers are used to manage and control the burner system. [Pg.114]


See other pages where Uncontrolled ordering is mentioned: [Pg.9]    [Pg.9]    [Pg.258]    [Pg.640]    [Pg.12]    [Pg.255]    [Pg.265]    [Pg.546]    [Pg.493]    [Pg.505]    [Pg.98]    [Pg.23]    [Pg.172]    [Pg.254]    [Pg.181]    [Pg.164]    [Pg.201]    [Pg.355]    [Pg.98]    [Pg.662]    [Pg.135]    [Pg.708]    [Pg.1203]    [Pg.302]    [Pg.1568]    [Pg.112]    [Pg.86]    [Pg.93]    [Pg.820]    [Pg.822]    [Pg.304]    [Pg.484]    [Pg.62]    [Pg.397]    [Pg.249]    [Pg.251]    [Pg.60]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Uncontrollable

Uncontrolled

© 2024 chempedia.info