Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tyrosine defined

This led to the conclusion that these amino acids were essential for the resolution capability and only 6 new libraries of 18 compounds had to be synthesized with these amino acid residues to define the position 3. Surprisingly, the separation abilities of all six libraries were very similar. Therefore, tyrosine was chosen for continuing deconvolution, since it is convenient as its aromatic ring can easily be detected by UV spectrometry. The last step, defining position 5, required the synthesis and testing of 6 individual hexapeptides. [Pg.65]

Tyiphostins are a group of substances, which block a variety of tyrosine kinases. Some of them have a relative selectivity for defined tyrosine kinase subtypes. [Pg.1262]

Fig. 15. The two Fe-S clusters are some 12-13 A apart and within possible electron transfer range. A tyrosine residue, Y493, is situated roughly halfway between the two clusters, but whether it plays a role in any electron transfer is unclear. Two adjacent tryptophan residues are also located close to cluster 2 again, their possible roles in any enzymatic reaction remain to be defined. Fig. 15. The two Fe-S clusters are some 12-13 A apart and within possible electron transfer range. A tyrosine residue, Y493, is situated roughly halfway between the two clusters, but whether it plays a role in any electron transfer is unclear. Two adjacent tryptophan residues are also located close to cluster 2 again, their possible roles in any enzymatic reaction remain to be defined.
The oxidative polymerization of 5,6-dihydroxyindole (1) and related tyrosine-derived metabolites is a central, most elusive process in the biosynthesis of eumelanins, which are the characteristic pigments responsible for the dark color of human skin, hair, and eyes. Despite the intense experimental research for more than a century,36 the eumelanin structure remains uncharacterized because of the lack of defined physicochemical properties and the low solubility, which often prevents successful investigations by modem spectroscopic techniques. The starting step of the oxidative process is a one-electron oxidation of 5,6-dihydroxyindole generating the semiquinone 1-SQ (Scheme 2.7). [Pg.48]

The regulation of phosphorylation of tyrosine hydroxylase is affected by stimuli that increase Ca2+ or cAMP concentrations in neurons, including nerve impulse conduction and certain neurotransmitters in well-defined regions of the nervous system, in the adrenal medulla and in cultured pheochromocytoma cells. In addition, tyrosine hydroxylase phosphorylation is stimulated by nerve growth factor in certain cell types, possibly via the activation of ERKs. These changes in the phosphorylation of tyrosine hydroxylase have been shown to correlate with changes in the catalytic activity of the enzyme and in the rate of catecholamine biosynthesis. [Pg.404]

The triplet-state splittings of tyrosine were first observed by electron paramagnetic resonance (EPR) more than two decades ago.l30 32) The initial characterization of the splittings was limited to a measurement of >, a root-mean-square zfs defined by... [Pg.6]

Structural information on aromatic donor molecule binding was obtained initially by using H NMR relaxation measurements to give distances from the heme iron atom to protons of the bound molecule. For example, indole-3-propionic acid, a structural homologue of the plant hormone indole-3-acetic acid, was found to bind approximately 9-10 A from the heme iron atom and at a particular angle to the heme plane (234). The disadvantage of this method is that the orientation with respect to the polypeptide chain cannot be defined. Other donor molecules examined include 4-methylphenol (p-cresol) (235), 3-hydroxyphenol (resorcinol), 2-methoxy-4-methylphenol and benzhydroxamic acid (236), methyl 2-pyridyl sulfide and methylp-tolyl sulfide (237), and L-tyrosine and D-tyrosine (238). Distance constraints of between 8.4 and 12.0 A have been reported (235-238). Aromatic donor proton to heme iron distances of 6 A reported earlier for aminotriazole and 3-hydroxyphenol (resorcinol) are too short because of an inappropriate estimate of the molecular correlation time (239), a parameter required for the calculations. Distance information for a series of aromatic phenols and amines bound to Mn(III)-substituted HRP C has been published (240). [Pg.139]

True alkaloids derive from amino acid and they share a heterocyclic ring with nitrogen. These alkaloids are highly reactive substances with biological activity even in low doses. All true alkaloids have a bitter taste and appear as a white solid, with the exception of nicotine which has a brown liquid. True alkaloids form water-soluble salts. Moreover, most of them are well-defined crystalline substances which unite with acids to form salts. True alkaloids may occur in plants (1) in the free state, (2) as salts and (3) as N-oxides. These alkaloids occur in a limited number of species and families, and are those compounds in which decarboxylated amino acids are condensed with a non-nitrogenous structural moiety. The primary precursors of true alkaloids are such amino acids as L-ornithine, L-lysine, L-phenylalanine/L-tyrosine, L-tryptophan and L-histidine . Examples of true alkaloids include such biologically active alkaloids as cocaine, quinine, dopamine, morphine and usambarensine (Figure 4). A fuller list of examples appears in Table 1. [Pg.6]


See other pages where Tyrosine defined is mentioned: [Pg.558]    [Pg.271]    [Pg.189]    [Pg.308]    [Pg.642]    [Pg.742]    [Pg.1006]    [Pg.1023]    [Pg.1099]    [Pg.42]    [Pg.217]    [Pg.436]    [Pg.55]    [Pg.215]    [Pg.332]    [Pg.133]    [Pg.239]    [Pg.254]    [Pg.342]    [Pg.81]    [Pg.210]    [Pg.157]    [Pg.79]    [Pg.3]    [Pg.22]    [Pg.217]    [Pg.194]    [Pg.233]    [Pg.5]    [Pg.12]    [Pg.211]    [Pg.187]    [Pg.23]    [Pg.75]    [Pg.179]    [Pg.569]    [Pg.40]    [Pg.142]    [Pg.8]    [Pg.598]    [Pg.345]    [Pg.31]   
See also in sourсe #XX -- [ Pg.946 , Pg.976 ]




SEARCH



© 2024 chempedia.info