Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Typical Conjugate 1,4-Addition Reaction

The organocalcium reagent (2.66 mmol) was prepared from 1-chlorooctane (395 mg, 2.66 mmol) and highly reactive calcium (3.10 mmol) as described in the preceding text. Lithium 2-thienylcyanocuprate (0.25 M in THE, 14 ml, [Pg.381]


A particular kind of conjugate addition reaction earned the Nobel Prize in chemistry for Otto Diels and Kurt Alder of the University of Kiel (Germany) m 1950 The Diels-Alder reaction is the conjugate addition of an alkene to a diene Using 1 3 buta diene as a typical diene the Diels-Alder reaction may be represented by the general equation... [Pg.409]

Methacryhc acid and its ester derivatives are Ctfjy -unsaturated carbonyl compounds and exhibit the reactivity typical of this class of compounds, ie, Michael and Michael-type conjugate addition reactions and a variety of cycloaddition and related reactions. Although less reactive than the corresponding acrylates as the result of the electron-donating effect and the steric hindrance of the a-methyl group, methacrylates readily undergo a wide variety of reactions and are valuable intermediates in many synthetic procedures. [Pg.246]

Conjugate addition reactions of acyclic Midiael acceptors possessing betetoatom-SLibstituted stereogenic centers in tlieir )>-positions may provide usefiil levels of diastereoselectivity. A typical example is given witli tlie y-alkoxy-substituted enoate 49 in Sdieme 6.8 [17]. High levels of diastereoselectivity in favor of tlie anii addition product SO were found in tlie course of dlmediylcuprate addition. [Pg.192]

Scheme 2.23 provides some examples of conjugate addition reactions. Entry 1 illustrates the tendency for reaction to proceed through the more stable enolate. Entries 2 to 5 are typical examples of addition of doubly stabilized enolates to electrophilic alkenes. Entries 6 to 8 are cases of addition of nitroalkanes. Nitroalkanes are comparable in acidity to (i-ketocslcrs (see Table 1.1) and are often excellent nucleophiles for conjugate addition. Note that in Entry 8 fluoride ion is used as the base. Entry 9 is a case of adding a zinc enolate (Reformatsky reagent) to a nitroalkene. Entry 10 shows an enamine as the carbon nucleophile. All of these reactions were done under equilibrating conditions. [Pg.184]

Scheme 29 Explanation for the typical syn selectivity observed in the enamine-catalyzed conjugate addition reactions... Scheme 29 Explanation for the typical syn selectivity observed in the enamine-catalyzed conjugate addition reactions...
If the 1,5-diearbonyl compound is required, then an aqueous work-up with either acid or base cleaves the silicon-oxygen bond in the product but the value of silyl enol ethers is that they can undergo synthetically useful reactions other than just hydrolysis. Addition of the silyl enol ether derived from aeetophenone (PhCOMe) to a disubstituted enone promoted by titanium tetrachloride is very rapid and gives the diketone product in good yield even though a quaternary carbon atom is created in the conjugate addition, This is a typical example of this very powerful class of conjugate addition reactions. [Pg.755]

A popular and useful application of the conjugate addition reaction is the combined conjugate addition-intramolecular aldol strategy, commonly known as the Robinson annulation. When the Michael donor is a ketone and the Michael acceptor an a,p-unsaturated ketone, the product is a 1,5-diketone which can readily undergo cyclization to a six-membered ring. Typical Michael donor substrates are 2-substituted cyclohexanones, which condense with alkyl vinyl ketones to give the intermediate conjugate addition products 42 (1.52). The subsequent intramolecular... [Pg.26]

Conjugate Addition Reactions. In the presence of TMSCl, cuprates undergo 1,2-addition to aldehydes and ketones to afford sUyl enol ethers (eq 29). In the case of a chiral aldehyde, addition of TMSCl follows typical Cram diastereofacial selectivity (eq 30). - ... [Pg.110]

Typical Copper-Mediated Conjugate Addition Reaction of Organozinc Halides to a,p-Unsaturated Ketones... [Pg.30]

Physical and Chemical Properties. The (F)- and (Z)-isomers of cinnamaldehyde are both known. (F)-Cinnamaldehyde [14371-10-9] is generally produced commercially and its properties are given in Table 2. Cinnamaldehyde undergoes reactions that are typical of an a,P-unsaturated aromatic aldehyde. Slow oxidation to cinnamic acid is observed upon exposure to air. This process can be accelerated in the presence of transition-metal catalysts such as cobalt acetate (28). Under more vigorous conditions with either nitric or chromic acid, cleavage at the double bond occurs to afford benzoic acid. Epoxidation of cinnamaldehyde via a conjugate addition mechanism is observed upon treatment with a salt of /-butyl hydroperoxide (29). [Pg.174]

One of the most striking differences between conjugated dienes and typical alkenes is in their electrophilic addition reactions. To review briefly, the addition of an electrophile to a carbon-carbon double bond is a general reaction of alkenes (Section 6.7). Markovnikov regiochemistry is found because the more stable carbo-cation is formed as an intermediate. Thus, addition of HC1 to 2-methylpropene yields 2-chloro-2-methylpropane rather than l-chloro-2-methylpropane, and addition of 2 mol equiv of HC1 to the nonconjugated diene 1,4-pentadiene yields 2,4-dichloropentane. [Pg.487]

Conjugated dienes also undergo electrophilic addition reactions readily, but mixtures of products are invariably obtained. Addition of HBr to 1,3-butadiene, for instance, yields a mixture of two products (not counting cis-trans isomers). 3-Bromo-l-butene is the typical Markovnikov product of 1,2-addition to a double bond, but l-bromo-2-butene appears unusual. The double bond in this product has moved to a position between carbons 2 and 3, and HBr has added to carbons 1 and 4, a result described as 1,4-addition. [Pg.487]

Both primary and secondary amines add to a /S-unsaturated aldehydes and ketones to yield /3-amino aldehydes and ketones rather than the alternative imines. Under typical reaction conditions, both modes of addition occur rapidly. But because the reactions are reversible, they generally proceed with thermodynamic control rather than kinetic control (Section 14.3), so the more stable conjugate addition product is often obtained to the complete exclusion of the less stable direct addition product. [Pg.727]

The previous sections dealt with reactions in which the new carbon-carbon bond is formed by addition of the nucleophile to a carbonyl group. Another important method for alkylation of carbon nucleophiles involves addition to an electrophilic multiple bond. The electrophilic reaction partner is typically an a,(3-unsaturated ketone, aldehyde, or ester, but other electron-withdrawing substituents such as nitro, cyano, or sulfonyl also activate carbon-carbon double and triple bonds to nucleophilic attack. The reaction is called conjugate addition or the Michael reaction. [Pg.183]

Several examples of conjugate addition of carbanions carried out under aprotic conditions are given in Scheme 2.24. The reactions are typically quenched by addition of a proton source to neutralize the enolate. It is also possible to trap the adduct by silylation or, as we will see in Section 2.6.2, to carry out a tandem alkylation. Lithium enolates preformed by reaction with LDA in THF react with enones to give 1,4-diketones (Entries 1 and 2). Entries 3 and 4 involve addition of ester enolates to enones. The reaction in Entry 3 gives the 1,2-addition product at —78°C but isomerizes to the 1,4-product at 25° C. Esters of 1,5-dicarboxylic acids are obtained by addition of ester enolates to a,(3-unsaturated esters (Entry 5). Entries 6 to 8 show cases of... [Pg.186]

The solid-state polymerization of diacetylenes is an example of a lattice-controlled solid-state reaction. Polydiacetylenes are synthesized via a 1,4-addition reaction of monomer crystals of the form R-C=C-CeC-R. The polymer backbone has a planar, fully conjugated structure. The electronic structure is essentially one dimensional with a lowest-energy optical transition of typically 16 000 cm-l. The polydiacetylenes are unique among organic polymers in that they may be obtained as large-dimension single crystals. [Pg.190]


See other pages where Typical Conjugate 1,4-Addition Reaction is mentioned: [Pg.381]    [Pg.45]    [Pg.987]    [Pg.143]    [Pg.735]    [Pg.333]    [Pg.256]    [Pg.306]    [Pg.73]    [Pg.40]    [Pg.72]    [Pg.218]    [Pg.248]    [Pg.219]    [Pg.506]    [Pg.256]    [Pg.725]    [Pg.43]    [Pg.70]    [Pg.114]    [Pg.1030]    [Pg.397]   


SEARCH



Conjugate addition reactions

Conjugate reaction

Conjugated addition reaction

Conjugated reaction

Conjugative reactions

© 2024 chempedia.info