Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lattice control, solid-state

The solid-state polymerization of diacetylenes is an example of a lattice-controlled solid-state reaction. Polydiacetylenes are synthesized via a 1,4-addition reaction of monomer crystals of the form R-C=C-CeC-R. The polymer backbone has a planar, fully conjugated structure. The electronic structure is essentially one dimensional with a lowest-energy optical transition of typically 16 000 cm-l. The polydiacetylenes are unique among organic polymers in that they may be obtained as large-dimension single crystals. [Pg.190]

These schemes have been frequently suggested [105-107] as possible mechanisms to achieve the chirally pure starting point for prebiotic molecular evolution toward our present homochiral biopolymers. Demonstrably successftd amplification mechanisms are the spontaneous resolution of enantiomeric mixtures under race-mizing conditions, [509 lattice-controlled solid-state asymmetric reactions, [108] and other autocatalytic processes. [103, 104] Other experimentally successful mechanisms that have been proposed for chirality amplification are those involving kinetic resolutions [109] enantioselective occlusions of enantiomers on opposite crystal faces, [110] and lyotropic liquid crystals. [Ill] These systems are interesting in themselves but are not of direct prebiotic relevance because of their limited scope and the specialized experimental conditions needed for their implementation. [Pg.189]

Figure 19.2 shows, at a microscopic level, what is going on. Atoms diffuse from the grain boundary which must form at each neck (since the particles which meet there have different orientations), and deposit in the pore, tending to fill it up. The atoms move by grain boundary diffusion (helped a little by lattice diffusion, which tends to be slower). The reduction in surface area drives the process, and the rate of diffusion controls its rate. This immediately tells us the two most important things we need to know about solid state sintering ... [Pg.195]

Conventional physical descriptions of materials in the solid state are concerned with solids in which properties are controlled or substantially influenced by the crystal lattice. When defects are treated in typical solid state studies, they are considered to modify and cause local perturbations to bonding controlled by lattice properties. In these cases, defect concentrations are typically low and usually characterized as either point, linear, or higher-order defects, which are seldom encountered together. [Pg.71]

While the examples in Scheme 7.16 hinted at the practicality of the solid state photodecarbonylation of ketones, the factors controlling this reaction remained unknown until very recently. As a starting point to understand and predict the photochemical behavior of ketones in terms of their molecular structures, we recall that most of the thermal (kinetic) energy of crystals is in the form of lattice vibrations. [Pg.307]

The main drawbacks of solid-state techniques are that (i) the distribution of the dopant in the host lattice may not be even since the precursors are not mixed on the atomic scale, and (ii) particle growth cannot be easily controlled and so milling and sieving is necessary. [Pg.698]

This is one of the oldest known solid-state reactions (127) and, in the case of cinnamic acid (60), was the one first used to establish the nature of lattice control of such reactions (128,129). It has been observed in a vast variety of compound types, and has proved to be of great value synthetically. [Pg.167]

The (2 + 2) photocyclodimerization of substituted olefins has provided some of the most striking examples of crystal-lattice control of the stereochemistry of a reaction. This may be exemplified by a selection of derivatives of 5-phenylbutadienoic acid (61), for which it is observed that the solid-state photobehaviors of the amide 62, the methyl ester 63, and the dichlorophenyl ester 64 differ entirely from one another each affords a single stereo- and regioisomer in high yield, but with different starting materials giving different types of products (130). In solution, irradiation of 63 or other photoactive dienes yields... [Pg.167]

An obvious extension of the studies on photodimerization of crystalline olefins is to solid-state vinyl polymerization (with light, if absorbed, or y-irradiation), with the aim of achieving stereoregular polymers. In fact, an immense effort has been made in this direction, but with singular lack of success. The explanation is that, for various reasons, the lattice in the vicinity of the chain front becomes progressively more damaged as polymerization proceeds, so that after relatively few steps there is loss of stereochemical control. [Pg.177]

McBride and co-workers have studied extensively the reactions of such free-radical precursors as azoalkanes and diacyl peroxides (246). By employing a variety of techniques, including X-ray structure analysis, electron paramagnetic resonance (EPR), and product studies, and comparing reactions in the crystal and in fluid and rigid solvents, they have been able to obtain extremely detailed pictures of the solid-state processes. We will describe here some of the types of lattice control they have elucidated, and the mechanisms that they suggest limit the efficacy of topochemical control. [Pg.203]

Eq. 2-248) [Braun and Wegner, 1983 Hasegawa et al., 1988, 1998]. This polymerization is a solid-state reaction involving irradiation of crystalline monomer with ultraviolet or ionizing radiation. The reaction is a topochemical or lattice-controlled polymerization in which reaction proceeds either inside the monomer crystal or at defect sites where the product structure and symmetry are controlled by the packing of monomer in the lattice or at defect sites, respectively. [Pg.184]

Several reviews deal with the solid-state reactions of simple inorganic salts and of organic compounds.1-8 The essential differences between solid-state reactions and reactions in solution can be ascribed to the fact that solid-state reactions occur within the constraining environment of the crystal lattice. The reactant crystal lattice can control both the kinetic features of a reaction, and the nature of the products. In many solid-phase reactions the separation distances and mutual orientations of reactants in the solid determine the product. Such reactions are said to be topo-chemically controlled.9 Topochemical control of a reaction product is analogous to kinetic control in solution. The product is not necessarily the thermodynamically most stable product available to the system, but is rather the one dictated by the reaction pathway available in the constraining environment of the solid. [Pg.463]

Vibrational Spectroscopy [Infrared (mid-IR, NIR), Raman]. In contrast to X-ray powder diffraction, which probes the orderly arrangement of molecules in the crystal lattice, vibration spectroscopy probes differences in the influence of the solid state on the molecular spectroscopy. As a result, there is often a severe overlap of the majority of the spectra for different forms of the pharmaceutical. Sometimes complete resolution of the vibrational modes of a particular functional group suffices to differentiate the solid-state form and allows direct quantification. In other instances, particularly with near-infrared (NIR) spectroscopy, the overlap of spectral features results in the need to rely on more sophisticated approaches for quantification. Of the spectroscopic methods which have been shown to be useful for quantitative analysis, vibrational (mid-IR absorption, Raman scattering, and NIR) spectroscopy is perhaps the most amenable to routine, on-line, off-line, and quality-control quantitation. [Pg.302]

The mechanism for solid-state control in this case relies on the rigidity of the crystal lattice and on a conformation that predisposes the reactant toward the observed product. In the case of carbene 1,2-R shifts, it is known that the migrating group must be aligned with the empty p-orbital of the s/ 2-hybridized singlet-state carbene [131,132]. As shown in Scheme 28, the solid state conforma-... [Pg.231]

Solid-state diffusion, which is involved in the release of oxygen, proceeds generally through the movement of point defects. The vacancy mechanism, the interstitial mechanism, and the interstitialcy mechanism can occur depending on the distortion of the solid lattice and the nature of the diffusing species. When one of the steps 1-5 is the slowest step representing the major resistance, that step is the rate-controlling one, which is not necessarily the chemical reaction (step 3). [Pg.403]


See other pages where Lattice control, solid-state is mentioned: [Pg.595]    [Pg.595]    [Pg.160]    [Pg.427]    [Pg.142]    [Pg.10]    [Pg.102]    [Pg.169]    [Pg.552]    [Pg.207]    [Pg.245]    [Pg.229]    [Pg.213]    [Pg.351]    [Pg.38]    [Pg.483]    [Pg.377]    [Pg.3]    [Pg.16]    [Pg.332]    [Pg.235]    [Pg.248]    [Pg.267]    [Pg.298]    [Pg.110]    [Pg.82]    [Pg.136]    [Pg.566]    [Pg.254]    [Pg.446]    [Pg.147]    [Pg.28]    [Pg.61]    [Pg.201]    [Pg.331]    [Pg.449]   


SEARCH



Control solid-state

Lattice control, solid-state mechanism

Lattice control, solid-state polymerization

© 2024 chempedia.info