Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Turbulent sublayer

FIGURE 2.2 Turbulent sublayers and mean velocity profiles. (From Ge [2008].)... [Pg.97]

As velocity continues to rise, the thicknesses of the laminar sublayer and buffer layers decrease, almost in inverse proportion to the velocity. The shear stress becomes almost proportional to the momentum flux (pk ) and is only a modest function of fluid viscosity. Heat and mass transfer (qv) to the wall, which formerly were limited by diffusion throughout the pipe, now are limited mostly by the thin layers at the wall. Both the heat- and mass-transfer rates are increased by the onset of turbulence and continue to rise almost in proportion to the velocity. [Pg.90]

Eddy diffusion as a transport mechanism dominates turbulent flow at a planar electrode ia a duct. Close to the electrode, however, transport is by diffusion across a laminar sublayer. Because this sublayer is much thinner than the layer under laminar flow, higher mass-transfer rates under turbulent conditions result. Assuming an essentially constant reactant concentration, the limiting current under turbulent flow is expected to be iadependent of distance ia the direction of electrolyte flow. [Pg.88]

For turbulent flow of a fluid past a solid, it has long been known that, in the immediate neighborhood of the surface, there exists a relatively quiet zone of fluid, commonly called the Him. As one approaches the wall from the body of the flowing fluid, the flow tends to become less turbulent and develops into laminar flow immediately adjacent to the wall. The film consists of that portion of the flow which is essentially in laminar motion (the laminar sublayer) and through which heat is transferred by molecular conduction. The resistance of the laminar layer to heat flow will vaiy according to its thickness and can range from 95 percent of the total resistance for some fluids to about I percent for other fluids (liquid metals). The turbulent core and the buffer layer between the laminar sublayer and turbulent core each offer a resistance to beat transfer which is a function of the turbulence and the thermal properties of the flowing fluid. The relative temperature difference across each of the layers is dependent upon their resistance to heat flow. [Pg.558]

In turbulent flow, the velocity profile is much more blunt, with most of the velocity gradient being in a region near the wall, described by a universal velocity profile. It is characterized by a viscous sublayer, a turbulent core, and a buffer zone in between. [Pg.637]

Under higher waterside pressure conditions, consideration of bulk water turbulent flow, the thickness of the steam-water laminar flow sublayer film at the heat transfer surface, and the general waterside physicochemical operating conditions that exist are important issues in reviewing the potential risks of deposition, corrosion, and other problems that may occur within an operating boiler. [Pg.143]

When the flow in the boundary layer is turbulent, streamline flow persists in a thin region close to the surface called the laminar sub-layer. This region is of particular importance because, in heat or mass transfer, it is where the greater part of the resistance to transfer lies. High heat and mass transfer rates therefore depend on the laminar sublayer being thin. Separating the laminar sub-layer from the turbulent part of the boundary... [Pg.664]

In the Taylor-Prandtl modification of the theory of heat transfer to a turbulent fluid, it was assumed that the heat passed directly from the turbulent fluid to the laminar sublayer and the existence of the buffer layer was neglected. It was therefore possible to apply the simple theory for the boundary layer in order to calculate the heat transfer. In most cases, the results so obtained are sufficiently accurate, but errors become significant when the relations are used to calculate heat transfer to liquids of high viscosities. A more accurate expression can be obtained if the temperature difference across the buffer layer is taken into account. The exact conditions in the buffer layer are difficult to define and any mathematical treatment of the problem involves a number of assumptions. However, the conditions close to the surface over which fluid is flowing can be calculated approximately using the universal velocity profile,(10)... [Pg.727]

A review on drag-reducing polymers is given in the literature [1359]. It has been suggested that drag reduction occurs by the interactions between elastic macromolecules and turbulent-flow macrostructures. In turbulent pipe flow, the region near the wall, composed of a viscous sublayer and a buffer layer, plays a major role in drag reduction. [Pg.167]

When electrically insulated strip or spot electrodes are embedded in a large electrode, and turbulent flow is fully developed, the steady mass-transfer rate gives information about the eddy diffusivity in the viscous sublayer very close to the electrode (see Section VI,C below). The fluctuating rate does not give information about velocity variations, and is markedly affected by the size of the electrode. The longitudinal, circumferential, and time scales of the mass-transfer fluctuations led Hanratty (H2) to postulate a surface renewal model with fixed time intervals based on the median energy frequency. [Pg.262]

Within the laminar sublayer the turbulent eddies are negligible, so... [Pg.158]

Equation (6-31) applies to the laminar sublayer region in a Newtonian fluid, which has been found to correspond to 0 < y+ < 5. The intermediate region, or buffer zone, between the laminar sublayer and the turbulent boundary layer can be represented by the empirical equation... [Pg.159]

The near-wall region is conceptually subdivided into three layers, based on experimental evidence. The innermost layer is the viscous sublayer in which the flow is almost laminar, and the molecular viscosity plays a dominant role. The outer layer is considered to be fully turbulent. The buffer layer lies between... [Pg.321]

To save computational effort, high-Reynolds number models, such as k s and its variants, are coupled with an approach in which the viscosity-affected inner region (viscous sublayer and buffer layer) are not resolved. Instead, semiempiri-cal formulas called wall functions are used to bridge the viscosity-affected region between the wall and the fully turbulent region. The two approaches to the sublayer problem are depicted schematically in Fig. 2 (Fluent, 2003). [Pg.322]

It is important to place the first near-wall grid node far enough away from the wall at yP to be in the fully turbulent inner region, where the log law-of-the-wall is valid. This usually means that we need y > 30-60 for the wall-adjacent cells, for the use of wall functions to be valid. If the first mesh point is unavoidably located in the viscous sublayer, then one simple approach (Fluent, 2003) is to extend the log-law region down to y — 11.225 and to apply the laminar stress-strain relationship U — y for y < 11.225. Results from near-wall meshes that are very fine using wall functions are not reliable. [Pg.323]

As the fluid s velocity must be zero at the solid surface, the velocity fluctuations must be zero there. In the region very close to the solid boundary, ie the viscous sublayer, the velocity fluctuations are very small and the shear stress is almost entirely the viscous stress. Similarly, transport of heat and mass is due to molecular processes, the turbulent contribution being negligible. In contrast, in the outer part of the turbulent boundary layer turbulent fluctuations are dominant, as they are in the free stream outside the boundary layer. In the buffer or generation zone, turbulent and molecular processes are of comparable importance. [Pg.66]

Equation 2.40 is an empirical equation known as the one-seventh power velocity distribution equation for turbulent flow. It fits the experimentally determined velocity distribution data with a fair degree of accuracy. In fact the value of the power decreases with increasing Re and at very high values of Re it falls as low as 1/10 [Schlichting (1968)]. Equation 2.40 is not valid in the viscous sublayer or in the buffer zone of the turbulent boundary layer and does not give the required zero velocity gradient at the centre-line. The l/7th power law is commonly written in the form... [Pg.87]

Consider a fully developed turbulent flow through a pipe of circular cross section. A turbulent boundary layer will exist with a thin viscous sublayer immediately adjacent to the wall, beyond which is the buffer or generation layer and finally the fully turbulent outer part of the boundary layer. [Pg.89]

Conditions in the fully turbulent outer part of the turbulent boundary layer are quite different. In a turbulent fluid, the shear stress f is given by equation 1.95. As illustrated in Example 1.10, outside the viscous sublayer and buffer zone the eddy kinematic viscosity e is much greater than the molecular kinematic viscosity v. Consequently equation 1.95 can be written as... [Pg.90]

The changing character of the flow in the different regions of the turbulent boundary layer explains certain aspects of the friction factor chart. If the absolute roughness of the pipe wall is smaller than the thickness of the viscous sublayer, flow disturbances caused by the roughness will be damped out by viscosity. The wall is subject to a viscous shear stress. Under these conditions, the line on the friction factor chart... [Pg.92]

As the wall becomes rougher, the velocity profile in the turbulent zone changes as shown in Figure 2.5, and the viscous sublayer and generation zone eventually disappear. [Pg.93]

However, the molecules percolating up into the boundary layer from beneath the soil surface tend to become trapped in the stagnant laminar sublayer of the boundary layer. This sublayer is usually much thinner than the overall turbulent boundary layer, since it is dominated by viscous and surface tension forces, rather than by velocity. Phelan and Webb call this the chemical boundary layer and state categorically that there will generally be no chemical signature above this chemical boundary layer [1, p. 52],... [Pg.91]

In the limit of extreme turbulence, when eddies of fresh solution are rapidly swept into the immediate vicinity of the interface, neither the laminar sublayer nor a stationary surface can exist the diffusion path may, according to Kishinevskii, become so short that diffusion is no longer rate-controlling, and consequently for such liquid-phase transfer (14)... [Pg.9]


See other pages where Turbulent sublayer is mentioned: [Pg.312]    [Pg.751]    [Pg.312]    [Pg.751]    [Pg.89]    [Pg.92]    [Pg.102]    [Pg.382]    [Pg.606]    [Pg.135]    [Pg.261]    [Pg.269]    [Pg.270]    [Pg.272]    [Pg.156]    [Pg.162]    [Pg.322]    [Pg.130]    [Pg.66]    [Pg.67]    [Pg.93]    [Pg.93]    [Pg.133]    [Pg.230]    [Pg.374]    [Pg.8]   


SEARCH



Fully turbulent sublayer

Sublayer

Turbulent laminar sublayer

Turbulent viscous sublayer

© 2024 chempedia.info