Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Triple layer model metal adsorption

When represents a metal cation not in the background electrolyte, the intrinsic constants are determined by fitting the triple layer model to adsorption edge data. This fitting entails a surface speciation calculation with previously measured values of the intrinsic constants in Eq. 5.61, the capacitance parameters Ci and C2, and the parameter Af. The computation includes Eqs. 5.58, 5.59, and 5.69, as well as surface charge and mole balance equations imposed as constraints. " ... [Pg.182]

Microscopic Subreactions and Macroscopic Proton Coefficients. The macroscopic proton coefficient may be used as a semi-empirical modeling variable when calibrated against major system parameters. However, x has also been used to evaluate the fundamental nature of metal/adsorbent interactions (e.g., 5). In this section, macroscopic proton coefficients (Xj and v) calculated from adsorption data are compared with the microscopic subreactions of the Triple-Layer Model ( 1 ) and their inter-relationships are discussed. [Pg.181]

A specific example of the relationship between the microscopic subreactions required to model experimental observations of metal removal and the macroscopic proton coefficient is shown for the case of Cd(II) adsorption onto a-A f (Figure 3). One variation of the surface coordination concept is used to describe the system subreactions the Triple Layer Model of Davis et al., (1,20). The specific subreactions which are considered, the formation constants and compact layer capacitances, are shown in Table IV. Protons are assigned to the o-plane (the oxide surface) and Cd(II) surface species and electrolyte ions to the 8-plane located a distance, 8, from the o-plane. [Pg.183]

Thus, according to these theories, all univalent (1 1) electrolytes should behave the same way. However, this is not what was observed experimentally. Solutions of different 1 1 electrolytes (e.g., NaCl, NaBr, Nal, KI) show species-specific behavior. In order to interpret this specific behavior, Grahame (5) proposed a new model of the interphase the triple-layer model. The basic idea in the interpretation of the ion-specific behavior is that anions, when attracted into the interphase, may become dehydrated and thus get closer to the electrode. Each anion undergoes this to a different extent. This difference in the degree of dehydration and the difference in the size of ions results in the specific behavior of the anions. Ions that are partially or fully dehydrated are in contact with the electrode. This contact adsorption of ions allows short-range forces (e.g., electric image forces) to act between the metal elec-... [Pg.48]

A more mechanistic and robust depiction of reversible metal adsorption is provided by SCMs that account explicitly for competitive speciation reactions using an equilibrium thermodynamic framework. Examples of SCMs in current use include the constant capacitance model (CCM), the diffuse double-layer model (DDLM), and the triple-layer model (TLM) (Stumm Morgan, 1996 Koretsky, 2000). Each of these models envisages... [Pg.364]

If a strongly adsorbing bivalent metal ion is added to the system described by Eqs. (39) and (40), in which competitive adsorption of protons and ions of basic electrolyte occurs, then according to the triple layer model [103-105] its addition can cause the formation of two kinds of surface complexes inner-sphere complexes SOM formed at the 0-plain of the triple layer and outer-sphere complexes SO M + formed at the, 3-plain. Some recent studies by Hayes and Leckie [142-145] suggest that the formation of the inner-sphere complexes is more probable for divalent cations like Cu, Pb, Cd" ", etc. than the formation of outer-sphere surface complexes. So, in general [142,143] ... [Pg.399]

Criscenti and Sverjensky (1999, 2002) continued to build the internally consistent set of triple layer model equilibrium constants developed by Sverjensky and Saliai (1996) and Sahai and Sverjensky (1997a,b) by reexamining sets of adsorption edge and isotherm data for divalent metal cation adsorption onto oxide surfaces. In contrast to previous investigations, they found tliat the adsorption of transition and heavy metals on solids such as goethite, y-ALOs, corundum, and anatase, which have dielectric constants between 10 and 22, was best described by surface complexes of the metal with the electrolyte anion. Metal (M +j adsorption from NaNOs solutions is described by... [Pg.241]

VIBRATIONAL SPECTROSCOPY Infrared and Raman spectroscopies have proven to be useful techniques for studying the interactions of ions with surfaces. Direct evidence for inner-sphere surface complex formation of metal and metalloid anions has come from vibrational spectroscopic characterization. Both Raman and Fourier transform infrared (FTIR) spectroscopies are capable of examining ion adsorption in wet systems. Chromate (Hsia et al., 1993) and arsenate (Hsia et al., 1994) were found to adsorb specifically on hydrous iron oxide using FTIR spectroscopy. Raman and FTIR spectroscopic studies of arsenic adsorption indicated inner-sphere surface complexes for arsenate and arsenite on amorphous iron oxide, inner-sphere and outer-sphere surface complexes for arsenite on amorphous iron oxide, and outer-sphere surface complexes for arsenite on amorphous aluminum oxide (Goldberg and Johnston, 2001). These surface configurations were used to constrain the surface complexes in application of the constant capacitance and triple layer models (Goldberg and Johnston, 2001). [Pg.242]

Various empirical and chemical models of metal adsorption were presented and discussed. Empirical model parameters are only valid for the experimental conditions under which they were determined. Surface complexation models are chemical models that provide a molecular description of metal and metalloid adsorption reactions using an equilibrium approach. Four such models, the constant capacitance model, the diffuse layer model, the triple layer model, and the CD-MUSIC model, were described. Characteristics common to all the models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Various conventions for defining the standard state activity coefficients for the surface species have been... [Pg.252]

Wu. Ch.H. et al.. Modeling competitive adsorption of molybdate, sulfate, and selenate on y-ALO, hy the triple-layer model, J. Colloid Interf. Sci., 233, 259, 2001. Hachiya. K. et al.. Static and kinetic studies of adsorption-desorption of metal ions on y-ALO, siuface. 1. Static study of adsorption-desoiption, J. Pltys. Chem., 88, 23, 1984. Tamiu a, H.. Katayama. N., and Furuichi, R.. Modeling of ion-exchange reactions on metal oxides with the Frumkin isotherm. 1. Acid-base and charge characteristics of MnO,. TiO,. Fe,O4. and ALO, surfaces and adsorption affinity of alkali metal ions. Environ. Sci. Technol.. 30. 1198. 1996. [Pg.952]

METAL CATION ADSORPTION. The formation of outer-sphere surface complexes involving metal cations has been described typically in the triple layer model by the reactions ... [Pg.182]

The charge reversal behavior shown in Fig. 4.7 also can be described by the triple layer model.The mechanism relies on the competition between the reactions in Eq. 5.41 and that in Eq. 5.67b. When an adsorptive, bivalent metal cation is present, an increase in pH value causes the... [Pg.183]

Most of the research on metal sorption at the mineral/water interface has dealt with equilibrium aspects. Numerous studies have used macroscopic approaches such as adsorption isotherms, empirical and semi-empirical equations (e.g., Freundlich, Langmuir), and surface complexation models (e.g., constant capacitance, triple layer) to describe adsorption, usually based on a 24 hour reaction time. [Pg.110]

Equations (l)-(4) are the foundations of electrical double layer theory and are often used in modeling the adsorption of metal ions at interfaces of charged solid and electrolyte solutions. In a typieal TLM, the outer layer capacitance is often fixed at a lower value (i.e., C2 = 0.2 F/m ), whereas iimer layer capacitance (Ci) can be adjusted to between 1.0 and 1.4 F/m [25]. It should be noted that the three-plane model (TPM) is a variation of the classical triple-layer model, in which the outer layer eapaeitanee is not fixed. Although the physical presentations of the TLM and TPM are identical as shown in Fig. 2, i.e., both involve a surface layer (0), an inner Helmholtz plane (p), and an outer Helmholtz plane d) where the diffuse double layer starts, a one-step protonation process (i.e., 1 piC approach) is, in general, assumed in the TPM, in eontrast to a two-step protonation process (i.e., 2 p/C approach) in the TLM. Another distinct difference is that pair-forming ions are assumed to be on the outer Helmholtz plane in the TPM but on the inner Helmholtz plane in the TLM. In our study, the outer layer capacitance is allowed to vary while the pair-forming ions are placed on the iimer Helmholtz plane with a complete set of surface eomplexation reactions being considered. Therefore, our approach represents a hybrid of the TPM and TLM. [Pg.612]

The sphalerite-ferrous surface binding constants in NaCl solutions were determined. Applications of the hybrid triple-layer model in predicting electrokinetics, surface charge density, metal ion adsorption, and surface solution speciation were described and illustrated with examples. [Pg.623]

Chemical adsorption mechanisms that are based on chemical interactions between the metal complexes and the solid support. In this case, all the ionic species present in the liquid solution compete for the active sites at the solid surface. This type of adsorption is usually described by surface ionization models, such as the triple-layer model and its extended versions (e.g., four-layer model) [1]. [Pg.383]

Chemical relaxation methods can be used to determine mechanisms of reactions of ions at the mineral/water interface. In this paper, a review of chemical relaxation studies of adsorption/desorption kinetics of inorganic ions at the metal oxide/aqueous interface is presented. Plausible mechanisms based on the triple layer surface complexation model are discussed. Relaxation kinetic studies of the intercalation/ deintercalation of organic and inorganic ions in layered, cage-structured, and channel-structured minerals are also reviewed. In the intercalation studies, plausible mechanisms based on ion-exchange and adsorption/desorption reactions are presented steric and chemical properties of the solute and interlayered compounds are shown to influence the reaction rates. We also discuss the elementary reaction steps which are important in the stereoselective and reactive properties of interlayered compounds. [Pg.230]


See other pages where Triple layer model metal adsorption is mentioned: [Pg.164]    [Pg.51]    [Pg.186]    [Pg.221]    [Pg.241]    [Pg.246]    [Pg.466]    [Pg.224]    [Pg.10]    [Pg.182]    [Pg.183]    [Pg.184]    [Pg.610]    [Pg.392]    [Pg.677]    [Pg.162]    [Pg.381]    [Pg.213]    [Pg.69]    [Pg.24]   


SEARCH



ADSORPTION MODELING

Adsorption layer

Adsorption modelling

Layer model

Layered models

Metal Layers

Metallic Layers

Metallic adsorption

Model metallic

Models layer model

Triple layers

Triple-layer model

© 2024 chempedia.info