Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trifluoromethyl hydrolysis

Oxazol-5(2H)-one, 2-benzylidene-4-methyl-tautomerism, 6, 186 Oxazol-5(2ff)-one, 2-methylene-isomerization, 6, 226 Oxazol-5(2H)-one, 2-trifluoromethyl-acylation, 6, 201 Oxazol-5(4ff)-one, 4-allyl-thermal rearrangements, 6, 199 Oxazol-5(4H)-one, 4(arylmethylene)-Friedel-Crafts reactions, 6, 205 geometrical isomerism, 6, 185 Oxazol-5(4ff)-one, 4-benzylidene-2-phenyl-configuration, 6, 185 photorearrangement, 6, 201 Oxazol-5(4ff)-one, 4-benzyl-2-methyl-Friedel-Crafts reactions, 6, 205 Oxazol-5(4ff)-one, 4-methylene-in amino acid synthesis, 6, 203 Oxazol-5(4ff) -one. 2-trifluoromethyl-hydrolysis, 6, 206 Oxazolones... [Pg.730]

Imidazole, 2,4,5-trichloro-1-methyl-chlorination, 5, 398 Imidazole, 2,4,5-trideutero-iodination, 5, 401 Imidazole, 1-trifluoroacetyl-reactions, 5, 451-452 Imidazole, 2-trifluoromethyl-hydrolysis, 5, 432 Imidazole, 2,4,5-triiodo-nitration, 5, 396 synthesis, 5, 400 Imidazole, 1,2,4-trimethyl-photolysis, 5, 377 rearrangement, 5, 378 Imidazole, 1,2,5-trimethyl-photochemical rearrangement, 5, 377 rearrangement, 5, 378 Imidazole, 1,4,5-trimethyl-bromination, 5, 399 3-oxide... [Pg.654]

In contrast to the alkyl hypochlorites, the fluoroalkyl hypochlorites are extremely susceptible to hydrolysis but are much more thermally stable. Trifluoromethyl hypochlorite, eg, showed no decomposition when heated for several days at 100°C. When decomposition does occur, several products are formed C2F OCl gives COF2, CF Cl, CF COF, and GIF, whereas (GF2)3GOGl gives (GF2)2GO, GI2, GF Gl, and G2F (40). [Pg.475]

Purine, 9- -D-ribofuranosyl-6-selenoxo- 1,6-dihydro-synthesis, 5, 597 Purine, 6-thiocyanato-acylation, 5, 559 Purine, 2-thioxo-synthesis, 5, 589 Purine, 8-thioxo-iodination, 5, 559 synthesis, 5, 577, 597 Purine, 2-thioxo-2,3-dihydro-synthesis, 5, 572 Purine, 6-thioxo-1,6-dihydro-acylation, 5, 559 dethiation, 5, 558 halogenation, 5, 559 hydrolysis, 5, 560 methylation, 5, 535 oxidation, 5, 560 synthesis, 5, 572, 596 Purine, 8-thioxo-7,8-dihydro-acylation, 5, 559 Purine, 2,6,8-trichloro-alkylation, 5, 530 amination, 5, 562 reactions, 5, 561, 562 with hydriodic acid, 5, 563 with pyridine, 5, 562 synthesis, 5, 598 Purine, 2,6,8-trichloro-7-methyl-synthesis, 5, 557 Purine, 8-trifluoromethyl-synthesis, 5, 574... [Pg.760]

Trifluoromethyl groups are very resistant to hydrolysis, unless they are allylic or benzylic, or vicinal to a carbon linked to hydrogen. In the last case, elimination of hydrogen fluonde leads to the formation of a difluoromethylene group which is key to additional reactions... [Pg.433]

Hydrolysis of the trifluoromethyl group of 2 tnfluoiomethylimidazoles is promoted by the formation of the anion, which readily eliminates fluoride. The resultant ditluorodiazafulvene then easily adds water The remaining steps in the hydrolysis ate predictable When aqueous ammonia is used, 2-cyanoimidazoles result [40] (equation 4])... [Pg.434]

Fluoride ion produced from the nucleophilic addition-elimination reactions of fluoroolefins can cataly7e isomerizations and rearrangements The reaction of per fluoro-3-methyl-l-butene with dimethylamine gives as products 1-/V,/Vdimeth-ylamino-1,1,2,2,4,4,4-heptafluoro-3-trifluoromethylbutane, N,W-dimetliyl-2,2,4,4,4-pentafluoro 3 trifluoromethylbutyramide, and approximately 3% of an unidentified olefin [10] The butylamide results from hydrolysis of the observed tertiary amine, and thus they share a common intermediate, l-Al,A -dimethylamino-l,l 24 44-hexafluoro-3-trifluoromethyl-2-butene, the product from the initial addition-elimination reaction (equation 4) The expected product from simple addition was not found... [Pg.743]

In a diacetamide, one acetamide is easily cleaved by hydrolysis with NaOMe and MeOH, which is consistent with the use of A,A-diacetyl-aminoquinazoUne, 2-trifluoromethyl-A, A-diacetylanihne, and A-methoxydi-acetamide as amidating agents. ... [Pg.554]

The hydrolysis proceeds via a diazafulvene intermediate, which in these systems can be formed without a total loss of aromatic character of the tricycle. It is tempting to suggest that, using this reasoning, linearly annelated 2-trifluoromethyl-imidazo[4,5-g]quinoline should be inert toward alkaline hydrolysis, as formation of the diazafulvene intermediate will again involve total dearomatization of the heterocyclic system (Scheme 36). [Pg.239]

Acidic hydrolysis of 4-imino-3-cyano-2-trifluoromethyl-4//-pyrido[l,2-n]pyrimidines in boiling EtOH with aqueous hydrochloric acid afforded 4-0X0 derivatives (00MI27). [Pg.216]

Lipases are the enzymes for which a number of examples of a promiscuous activity have been reported. Thus, in addition to their original activity comprising hydrolysis of lipids and, generally, catalysis of the hydrolysis or formation of carboxylic esters [107], lipases have been found to catalyze not only the carbon-nitrogen bond hydrolysis/formation (in this case, acting as proteases) but also the carbon-carbon bond-forming reactions. The first example of a lipase-catalyzed Michael addition to 2-(trifluoromethyl)propenoic acid was described as early as in 1986 [108]. Michael addition of secondary amines to acrylonitrile is up to 100-fold faster in the presence of various preparations of the hpase from Candida antariica (CAL-B) than in the absence of a biocatalyst (Scheme 5.20) [109]. [Pg.113]

Flutolanil and its metabolites containing the 2-(trifluoromethyl)benzanilide moiety are converted to methyl 2-(trifluoromethyl)benzoate (2-TFBA Me-ester) by alkaline hydrolysis and methylation for GC/MS analyses. [Pg.1199]

The first substrate analogue inhibitors of FAAH were reported in 1994. The anandamide analogues prepared represented three elasses of putative transition-state inhibitors a-trifluoromethyl ketones, a-ketoesters and a-ketoamides [62], In the initial sereening studies, it was found that the trifluoromethyl ketone eompounds tested were effeetive inhibitors of AEA hydrolysis. A selected set of a-keto esters also inhibited hydrolysis, while a-keto amides were ineffective. In particular, arachidonyl trifluoromethyl ketone (32), gave almost 100% inhibition of anandamide hydrolysis. A detailed investigation of the structural requirements for FAAH inhibition with a-trifluoromethyl ketones has been carried out by Roger and co-workers [63]. [Pg.215]

Thompson, D. C. Perera, K. London, R. Spontaneous hydrolysis of 4-trifluoromethyl-phenol to a quinone methide and subsequent protein alkylation. Chem.-Biol. Interact. 2000, 126, 1-14. [Pg.28]

Cycloaddition of furans followed by a subsequent transformation is still adopted as a useful strategy to prepare fluorine-containing benzene derivatives and isoquinoline compounds <00SL550>. The cycloaddition adduct can also be converted to a trifluoromethyl substituted cyclohexanone compound via hydrogenation and hydrolysis. Examples of these transformations are illustrated below. [Pg.134]

Reaction in organic solvent can sometimes provide superior selectivity to that observed in aqueous solution. For example, Keeling et al recently produced enantioenriched a-trifluoromethyl-a-tosyloxymethyl epoxide, a key intermediate in the synthetic route to a series of nonsteroidal glucocorticoid receptor agonist drug candidates, through the enan-tioselective acylation of a prochiral triol using the hpase from Burkholderia cepacia in vinyl butyrate and TBME (Scheme 1.59). In contrast, attempts to access the opposite enantiomer by desymmetrization of the 1,3-diester by lipase-catalysed hydrolysis resulted in rapid hydrolysis to triol under a variety of conditions. [Pg.59]

Because of the strong electron-withdrawing effect of the trifluoromethyl group, trifluoroacetamides are subject to hydrolysis under mild conditions. This has permitted trifluoroacetyl groups to be used as amino-protecting groups in some situations. [Pg.833]

Trifluoromethylation of 1-morpholinocycloalkene or /V,/V-diethylaniline with (CF3)3Bi was mediated by Cu(OAc)2 (Scheme 13) [29]. The reaction of 1-morpholi-nocycloalkene afforded 2-trifhioromethylcycloalkanones in moderate to good yields, after acid hydrolysis of the intermediate products. In the reaction of N,N-diethylaniline, equimolar amounts of trifhioromethylanilines and CF3H were produced. The reaction was believed to proceed through CF3 radical, which was produced from intermediate Cu(CF3)(OAc). [Pg.205]

The proposed mechanism of the boron-catalyzed amidation is depicted in the Figure. It has been ascertained by H NMR analysis that monoacyloxyboronic add 1 is produced by heating the 2 1 mixture of 4-phenylbutyric add and [3,5-bis(trifluoromethyl)phenyl]boronic acid in toluene under reflux with removal of water. The corresponding diacyloxyboron derivative is not observed at all. When 1 equiv of benzylamine is added to a solution of 1 in toluene, the amidation proceeds even at room temperature, but the reaction stops before 50% conversion because of hydrolysis of 1. These experimental results suggest that the rate-determining step is the generation of 1. [Pg.238]


See other pages where Trifluoromethyl hydrolysis is mentioned: [Pg.654]    [Pg.654]    [Pg.329]    [Pg.426]    [Pg.102]    [Pg.380]    [Pg.383]    [Pg.381]    [Pg.661]    [Pg.270]    [Pg.134]    [Pg.190]    [Pg.812]    [Pg.74]    [Pg.85]    [Pg.203]    [Pg.128]    [Pg.399]    [Pg.402]    [Pg.87]    [Pg.554]    [Pg.336]    [Pg.57]   
See also in sourсe #XX -- [ Pg.332 ]

See also in sourсe #XX -- [ Pg.13 , Pg.270 ]




SEARCH



Imidazoles, 2-trifluoromethyl-, hydrolysis

Trifluoromethyl group hydrolysis

© 2024 chempedia.info