Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transport coefficients theory

The theory coimecting transport coefficients with the intemiolecular potential is much more complicated for polyatomic molecules because the internal states of the molecules must be accounted for. Both quantum mechanical and semi-classical theories have been developed. McCourt and his coworkers [113. 114] have brought these theories to computational fruition and transport properties now constitute a valuable test of proposed potential energy surfaces that... [Pg.204]

Specific heat of each species is assumed to be the function of temperature by using JANAF [7]. Transport coefficients for the mixture gas such as viscosity, thermal conductivity, and diffusion coefficient are calculated by using the approximation formula based on the kinetic theory of gas [8]. As for the initial condition, a mixture is quiescent and its temperature and pressure are 300 K and 0.1 MPa, respectively. [Pg.27]

Combining hindered diffusion theory with the diffusion/convection problem in the model pore, Trinh et al. [399] showed how the effective transport coefficients depend upon the ratio of the solute to pore size. Figure 28 shows that as the ratio of solute to pore size approaches unity, the effective mobility function becomes very steep, thus indicating that the resolution in the separation will be enhanced for molecules with size close to the size of the pore. Similar results were found for the effective dispersion, and the implications for the separation of various sizes of molecules were discussed by Trinh et al. [399]. [Pg.594]

The first theoretical attempts in the field of time-resolved X-ray diffraction were entirely empirical. More precise theoretical work appeared only in the late 1990s and is due to Wilson et al. [13-16]. However, this theoretical work still remained preliminary. A really satisfactory approach must be statistical. In fact, macroscopic transport coefficients like diffusion constant or chemical rate constant break down at ultrashort time scales. Even the notion of a molecule becomes ambiguous at which interatomic distance can the atoms A and B of a molecule A-B be considered to be free Another element of consideration is that the electric field of the laser pump is strong, and that its interaction with matter is nonlinear. What is needed is thus a statistical theory reminiscent of those from time-resolved optical spectroscopy. A theory of this sort was elaborated by Bratos and co-workers and was published over the last few years [17-19]. [Pg.265]

The present theory can be placed in some sort of perspective by dividing the nonequilibrium field into thermodynamics and statistical mechanics. As will become clearer later, the division between the two is fuzzy, but for the present purposes nonequilibrium thermodynamics will be considered that phenomenological theory that takes the existence of the transport coefficients and laws as axiomatic. Nonequilibrium statistical mechanics will be taken to be that field that deals with molecular-level (i.e., phase space) quantities such as probabilities and time correlation functions. The probability, fluctuations, and evolution of macrostates belong to the overlap of the two fields. [Pg.4]

Moving downward to the molecular level, a number of lines of research flowed from Onsager s seminal work on the reciprocal relations. The symmetry rule was extended to cases of mixed parity by Casimir [24], and to nonlinear transport by Grabert et al. [25] Onsager, in his second paper [10], expressed the linear transport coefficient as an equilibrium average of the product of the present and future macrostates. Nowadays, this is called a time correlation function, and the expression is called Green-Kubo theory [26-30]. [Pg.5]

C. M. Pooley and J. M. Yeomans, Kinetic theory derivation of the transport coefficients of stochastic rotation dynamics, J. Phys. Chem. B 109, 6505 (2005). [Pg.142]

In this chapter the theory and practice of limiting-current technique for the measurement of mass-transport coefficients have been described. The selective discussion and tabular compilation of results of investigations that used limiting-current measurements should be indicative of the widespread use of this relatively novel method. [Pg.279]

No attempt will be made here to extend our results beyond the simple lowest-order limiting laws the often ad hoc modifications of these laws to higher concentrations are discussed in many excellent books,8 11 14 but we shall not try to justify them here. As a matter of fact, for equilibrium as well as for nonequilibrium properties, the rigorous extension of the microscopic calculation beyond the first term seems outside the present power of statistical mechanics, because of the rather formidable mathematical difficulties which arise. The main interests of a microscopic theory lie both in the justification qf the assumptions which are involved in the phenomenological approach and in the possibility of extending the mathematical techniques to other problems where a microscopic approach seems necessary in the particular case of the limiting laws, obvious extensions are in the direction of other transport coefficients of electrolytes (viscosity, thermal conductivity, questions involving polyelectrolytes) and of plasma physics, as well as of quantum phenomena where similar effects may be expected (conductivity of metals and semi-... [Pg.161]

Eq. (437) may be transformed into a true transport equation for f this transport equation is the generalized linearized Boltzmann equation for f, as it also appears in the theory of thermal transport coefficients. More precisely, we get ... [Pg.261]

Section III is devoted to Prigogine s theory.14 We write down the general non-Markovian master equation. This expression is non-instantaneous because it takes account of the variation of the velocity distribution function during one collision process. Such a description does not exist in the theories of Bogolubov,8 Choh and Uhlenbeck,6 and Cohen.8 We then present two special forms of this general master equation. On the one hand, when one is far from the initial instant the Variation of the distribution functions becomes slower and slower and, in the long-time limit, the non-Markovian master equation reduces to the Markovian generalized Boltzmann equation. On the other hand, the transport coefficients are always calculated in situations which are... [Pg.319]

The macroscopic properties of a material are related intimately to the interactions between its constituent particles, be they atoms, ions, molecules, or colloids suspended in a solvent. Such relationships are fairly well understood for cases where the particles are present in low concentration and interparticle interactions occur primarily in isolated clusters (pairs, triplets, etc.). For example, the pressure of a low-density vapor can be accurately described by the virial expansion,1 whereas its transport coefficients can be estimated from kinetic theory.2,3 On the other hand, using microscopic information to predict the properties, and in particular the dynamics, of condensed phases such as liquids and solids remains a far more challenging task. In these states... [Pg.125]

Although the theory of polyelectrolyte dynamics reviewed here provides approximate crossover formulas for the experimentally measured diffusion coefficients, electrophoretic mobility, and viscosity, the validity of the formulas remains to be established. In spite of the success of one unifying conceptual framework to provide valid asymptotic results, in qualitative agreement with experimental facts, it is desirable to establish quantitative validity. This requires (a) gathering of experimental data on well-characterized polyelectrolyte solutions and (b) obtaining the relationships between the various transport coefficients. Such data are not currently available, and experiments of this type are out of fashion. In addition to these experimental challenges, there are many theoretical issues that need further elaboration. A few of these are the following ... [Pg.57]

The plan of this chapter is the following. Section II gives a summary of the phenomenology of irreversible processes and set up the stage for the results of nonequilibrium statistical mechanics to follow. In Section III, it is explained that time asymmetry is compatible with microreversibility. In Section IV, the concept of Pollicott-Ruelle resonance is presented and shown to break the time-reversal symmetry in the statistical description of the time evolution of nonequilibrium relaxation toward the state of thermodynamic equilibrium. This concept is applied in Section V to the construction of the hydrodynamic modes of diffusion at the microscopic level of description in the phase space of Newton s equations. This framework allows us to derive ab initio entropy production as shown in Section VI. In Section VII, the concept of Pollicott-Ruelle resonance is also used to obtain the different transport coefficients, as well as the rates of various kinetic processes in the framework of the escape-rate theory. The time asymmetry in the dynamical randomness of nonequilibrium systems and the fluctuation theorem for the currents are presented in Section VIII. Conclusions and perspectives in biology are discussed in Section IX. [Pg.85]

Instead of the dilute solution approach above, concentrated solution theory can also be used to model liquid-equilibrated membranes. As done by Weber and Newman, the equations for concentrated solution theory are the same for both the one-phase and two-phase cases (eqs 32 and 33) except that chemical potential is replaced by hydraulic pressure and the transport coefficient is related to the permeability through comparison to Darcy s law. Thus, eq 33 becomes... [Pg.455]

A chemical relaxation technique that measures the magnitude and time dependence of fluctuations in the concentrations of reactants. If a system is at thermodynamic equilibrium, individual reactant and product molecules within a volume element will undergo excursions from the homogeneous concentration behavior expected on the basis of exactly matching forward and reverse reaction rates. The magnitudes of such excursions, their frequency of occurrence, and the rates of their dissipation are rich sources of dynamic information on the underlying chemical and physical processes. The experimental techniques and theory used in concentration correlation analysis provide rate constants, molecular transport coefficients, and equilibrium constants. Magde" has provided a particularly lucid description of concentration correlation analysis. See Correlation Function... [Pg.164]

The Molecular Origins of Mass Diffusivity. In a manner directly analogous to the derivations of Eq. (4.6) for viscosity and Eq. (4.34) for thermal conductivity, the diffusion coefficient, or mass diffusivity, D, in units of m /s, can be derived from the kinetic theory of gases for rigid-sphere molecules. By means of summary, we present all three expressions for transport coefficients here to further illustrate their similarities. [Pg.344]

The early theories for the transport coefficients were based on the concept of the mean free path. Excellent summaries of these older theories and their later modifications are to be found in standard text books on kinetic theory (J2, K2). The mean-free-path theories, while still very useful from a pedagogical standpoint, have to a large extent been supplanted by the rigorous mathematical theory of nonuniform gases, which is based on the solution of the Boltzmann equation. This theory is... [Pg.182]

The Chapman-Enskog theory was developed for dilute, monatomic gases for pure substances and for binary mixtures. The extension to multicomponent gas mixtures was performed by Curtiss and Hirschfelder (C12, Hll), who in addition have shown that the Chapman-Enskog results may also be obtained by means of an alternate variational method. Recently Kihara (K3) has shown how expressions for the higher approximations to the transport coefficients may be obtained, which are considerably simpler than those previously proposed by Chapman and Cowling these simpler formulas are particularly advantageous for calculating the coefficients of diffusion and thermal diffusion (M3, M4). [Pg.183]

The connection between the classical and quantum formulations of the transport coefficients has been studied by applying the WKB method to the quantum formulation of the kinetic theory (B16, B17). In this way it was shown that at high temperatures the quantum formulas for the transport coefficients may be written as a power series in Planck s constant h. When the classical limit is taken (h approaches zero), then the classical formulas of Chapman and Enskog are obtained. [Pg.190]

The theory which forms the basis for discussions of the transport phenomena in dense gases is Enskog s kinetic theory for a pure gas made up of rigid spheres (E3, C3, Chapter 16 Hll, 9.3). To date, this theory in one of several modifications is the best theory available for calculating the temperature and density dependence of the transport coefficients. Recently Enskog s theory has been extended to a pure gas made up of nonrigid molecules by Curtiss and Snider (CIO, C14). Enskog s theory has also been extended to binary gas mixtures by Thorne (C3, p. 292). [Pg.191]

An alternate approach has been attempted for describing the transport phenomena in dense gas and liquid systems by means of the methods of nonequilibrium statistical mechanics, as developed by Kirkwood (K7, K8) and by Born and Green (B18, G10). Although considerable progress has been made in the development of a formal theory, the method does not at the present time provide a means for the practical calculation of the transport coefficients. Hence in this section we discuss only the applications based on Enskog s theory. [Pg.191]


See other pages where Transport coefficients theory is mentioned: [Pg.669]    [Pg.687]    [Pg.2249]    [Pg.438]    [Pg.177]    [Pg.272]    [Pg.572]    [Pg.5]    [Pg.80]    [Pg.105]    [Pg.127]    [Pg.118]    [Pg.185]    [Pg.18]    [Pg.110]    [Pg.9]    [Pg.37]    [Pg.157]    [Pg.166]    [Pg.179]    [Pg.182]    [Pg.186]    [Pg.188]    [Pg.191]   
See also in sourсe #XX -- [ Pg.32 , Pg.33 , Pg.34 ]




SEARCH



Transport coefficient

Transport coefficients, mode coupling theory

Transport theory

Transportation theories

© 2024 chempedia.info