Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition state product-like

Hammond postulate (Section 6.10) A postulate stating that we can get a picture of what a given transition state looks like by looking at the structure of the nearest stable species. Exergonic reactions have transition states that resemble reactant endergonic reactions have transition states that resemble product. [Pg.1243]

TRANSITION-STATE ANALOGS are stable molecules that are designed to look more like the transition state than like the substrate or product. Transition-state analogs usually bind to the enzyme they re designed to inhibit much more tightly (by 1000-fold or more) than the substrate does. [Pg.105]

Experiments cannot tell us what transition states look like. The fact is that transition states cannot even be detected experimentally let alone characterized, at least not directly. While measured activation energies relate to the energies of transition states above reactants, and while activation entropies and activation volumes, as well as kinetic isotope effects, may be invoked to imply some aspects of transition-state structure, no experiment can actually provide direct information about the detailed geometries and/or other physical properties of transition states. Quite simply, transition states do not exist in terms of a stable population of molecules on which experimental measurements may be made. Experimental activation parameters provide some guide, but tell us little detail about what actually transpires in going from reactants to products. [Pg.414]

Lithium enolates 279 do give a-hydroxy-carbonyl compounds but there is a significant side reaction that is a kind of aldol reaction on the imine product 272 through a six-membered cyclic transition state 280 like those we used to explain the stereoselectivity of aldol reactions in chapter 4. Hence the Na or K disilazide bases NaHMDS or KHMDS are usually used. [Pg.804]

When questions of selectivity arise, it is always important to consider what the transition state looks like. Selective radicals will have more product-like transition states in any abstraction reaction, and therefore the factors influencing the stability of those products will be important in the transition state as well. [Pg.497]

A more eflicient and general synthetic procedure is the Masamune reaction of aldehydes with boron enolates of chiral a-silyloxy ketones. A double asymmetric induction generates two new chiral centres with enantioselectivities > 99%. It is again explained by a chair-like six-centre transition state. The repulsive interactions of the bulky cyclohexyl group with the vinylic hydrogen and the boron ligands dictate the approach of the enolate to the aldehyde (S. Masamune, 1981 A). The fi-hydroxy-x-methyl ketones obtained are pure threo products (threo = threose- or threonine-like Fischer formula also termed syn" = planar zig-zag chain with substituents on one side), and the reaction has successfully been applied to macrolide syntheses (S. Masamune, 1981 B). Optically pure threo (= syn") 8-hydroxy-a-methyl carboxylic acids are obtained by desilylation and periodate oxidation (S. Masamune, 1981 A). Chiral 0-((S)-trans-2,5-dimethyl-l-borolanyl) ketene thioketals giving pure erythro (= anti ) diastereomers have also been developed by S. Masamune (1986). [Pg.62]

Transition state search algorithms rather climb up the potential energy surface, unlike geometry optimization routines where an energy minimum is searched for. The characterization of even a simple reaction potential surface may result in location of more than one transition structure, and is likely to require many more individual calculations than are necessary to obtain equilibrium geometries for either reactant or product. [Pg.17]

Alkyl groups under nonacidic conditions sterically deflect nucleophiles from C, but under acidic conditions this steric effect is to some extent offset by an electronic one the protonated oxirane opens by transition states (Scheme 40) which are even more 5Nl-like than the borderline Sn2 one of the unprotonated oxirane. Thus electronic factors favor cleavage at the more substituted carbon, which can better support a partial positive charge the steric factor is still operative, however, and even under acidic conditions the major product usually results from Cp attack. [Pg.108]

A more complete analysis of interacting molecules would examine all of the involved MOs in a similar wty. A correlation diagram would be constructed to determine which reactant orbital is transformed into wfiich product orbital. Reactions which permit smooth transformation of the reactant orbitals to product orbitals without intervention of high-energy transition states or intermediates can be identified in this way. If no such transformation is possible, a much higher activation energy is likely since the absence of a smooth transformation implies that bonds must be broken before they can be reformed. This treatment is more complete than the frontier orbital treatment because it focuses attention not only on the reactants but also on the products. We will describe this method of analysis in more detail in Chapter 11. The qualitative approach that has been described here is a useful and simple wty to apply MO theory to reactivity problems, and we will employ it in subsequent chapters to problems in reactivity that are best described in MO terms. I... [Pg.53]

The significance of the concept incorporated in Hammond s postulate is that, in appropriate cases, it permits discussion of transition-state structure in terms of the reactants, inteimediates, or products in a multistep reaction sequence. The postulate indicates that the cases in which such comparison is appropriate are those in which the transition state is close in energy to the reactant, intermediate, or product. Chemists sometimes speak of early or late transition states. An early transition state is reactant-like whereas a late transition state is product-like. [Pg.218]

According to this concept, the aldol condensation normally occurs through a chairlike transition state. It is further assumed that the stmcture of this transition state is sufficiently similar to that of chair cyclohexane to allow the conformational concepts developed for cyclohexane derivatives to be applied. Thus, in the example above, the reacting aldehyde is shown with R rather than H in the equatorial-like position. The differences in stability of the various transition states, and therefore the product ratios, are governed by the steric interactions between substituents. [Pg.468]

Important differences are seen when the reactions of the other halogens are compared to bromination. In the case of chlorination, although the same chain mechanism is operative as for bromination, there is a key difference in the greatly diminished selectivity of the chlorination. For example, the pri sec selectivity in 2,3-dimethylbutane for chlorination is 1 3.6 in typical solvents. Because of the greater reactivity of the chlorine atom, abstractions of primary, secondary, and tertiary hydrogens are all exothermic. As a result of this exothermicity, the stability of the product radical has less influence on the activation energy. In terms of Hammond s postulate (Section 4.4.2), the transition state would be expected to be more reactant-like. As an example of the low selectivity, ethylbenzene is chlorinated at both the methyl and the methylene positions, despite the much greater stability of the benzyl radical ... [Pg.703]

Reactant and product structures. Because the transition state stmcture is normally different from but intermediate to those of the initial and final states, it is evident that the stmctures of the reactants and products should be known. One should, however, be aware of a possible source of misinterpretation. Suppose the products generated in the reaction of kinetic interest undergo conversion, on a time scale fast relative to the experimental manipulations, to thermodynamically more stable substances then the observed products will not be the actual products of the reaction. In this case the products are said to be under thermodynamic control rather than kinetic control. A possible example has been given in the earlier description of the reaction of hydroxide ion with ester, when it seems likely that the products are the carboxylic acid and the alkoxide ion, which, however, are transformed in accordance with the relative acidities of carboxylic acids and alcohols into the isolated products of carboxylate salt and alcohol. [Pg.6]

Let us now turn to the surfaces themselves to learn the kinds of kinetic information they contain. First observe that the potential energy surface of Fig. 5-2 is drawn to be symmetrical about the 45° diagonal. This is the type of surface to be expected for a symmetrical reaction like H -I- H2 = H2 -h H, in which the reactants and products are identical. The corresponding reaction coordinate diagram in Fig. 5-3, therefore, shows the reactants and products having the same stability (energy) and the transition state appearing at precisely the midpoint of the reaction coordinate. [Pg.197]


See other pages where Transition state product-like is mentioned: [Pg.663]    [Pg.135]    [Pg.663]    [Pg.135]    [Pg.320]    [Pg.128]    [Pg.413]    [Pg.64]    [Pg.152]    [Pg.477]    [Pg.106]    [Pg.326]    [Pg.135]    [Pg.268]    [Pg.539]    [Pg.3027]    [Pg.142]    [Pg.326]    [Pg.539]    [Pg.40]    [Pg.243]    [Pg.354]    [Pg.506]    [Pg.830]    [Pg.878]    [Pg.68]    [Pg.168]    [Pg.320]    [Pg.123]    [Pg.222]    [Pg.610]    [Pg.67]    [Pg.432]   
See also in sourсe #XX -- [ Pg.128 ]

See also in sourсe #XX -- [ Pg.128 ]




SEARCH



Product state

Product transitions

Transition product-like

© 2024 chempedia.info