Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular structures transitions

If a program is given a molecular structure and told to find a transition structure, it will first compute the Hessian matrix (the matrix of second derivatives... [Pg.151]

Material properties can be further classified into fundamental properties and derived properties. Fundamental properties are a direct consequence of the molecular structure, such as van der Waals volume, cohesive energy, and heat capacity. Derived properties are not readily identified with a certain aspect of molecular structure. Glass transition temperature, density, solubility, and bulk modulus would be considered derived properties. The way in which fundamental properties are obtained from a simulation is often readily apparent. The way in which derived properties are computed is often an empirically determined combination of fundamental properties. Such empirical methods can give more erratic results, reliable for one class of compounds but not for another. [Pg.311]

Section 13 20 IR spectroscopy probes molecular structure by examining transitions between vibrational energy levels using electromagnetic radiation m the 625-4000 cm range The presence or absence of a peak at a charac tenstic frequency tells us whether a certain functional group is present Table 13 4 lists IR absorption frequencies for common structural units... [Pg.577]

It is not the purpose of this book to discuss in detail the contributions of NMR spectroscopy to the determination of molecular structure. This is a specialized field in itself and a great deal has been written on the subject. In this section we shall consider only the application of NMR to the elucidation of stereoregularity in polymers. Numerous other applications of this powerful technique have also been made in polymer chemistry, including the study of positional and geometrical isomerism (Sec. 1.6), copolymers (Sec. 7.7), and helix-coil transitions (Sec. 1.11). We shall also make no attempt to compare the NMR spectra of various different polymers instead, we shall examine only the NMR spectra of different poly (methyl methacrylate) preparations to illustrate the capabilities of the method, using the first system that was investigated by this technique as the example. [Pg.482]

It is interesting that the molecular structure in the transition state is also subject to a solvent effect. Compared to the gas phase, the solute molecular geometry at the transition state shifts toward the reactant side in aqueous solution the C—N and C—Cl distances... [Pg.433]

For C70, molecular orbital calculations [60] reveal a large number of closely-spaced orbitals both above and below the HOMO-LUMO gap [60]. The large number of orbitals makes it difficult to assign particular groups of transitions to structure observed in the solution spectra of C70. UV-visible solution spectra for higher fullerenes (C n = 76,78,82,84,90,96) have also been reported [37, 39, 72]. [Pg.50]

The derivation of the transition state theory expression for the rate constant requires some ideas from statistical mechanics, so we will develop these in a digression. Consider an assembly of molecules of a given substance at constant temperature T and volume V. The total number N of molecules is distributed among the allowed quantum states of the system, which are determined by T, V, and the molecular structure. Let , be the number of molecules in state i having energy e,- per molecule. Then , is related to e, by Eq. (5-17), which is known as theBoltzmann distribution. [Pg.201]

Examine atomic charges and the electrostatic potentit map for the lower-energy transition state. Which atom appear to be most electron rich in each Is the negativ charge concentrated on a single atom in the transition stat or delocalized Add this charge information (either or 5- ) to the molecular structure for the transition stat which you drew previously. [Pg.62]

Examine both pyramidal and planar forms for each of the above molecules amine, phosphine and sulfoxide). Assume that the lower and higher-energy forms con-espond, respectively, to the preferred molecular structure and the transition state for configuration inversion. [Pg.71]

One cannot discuss Lewis acid-catalyzed cycloaddition reactions in the present context without trying to understand the reaction course mechanistically, e.g. using a frontier molecular orbital (FMO) point of reasoning, or theoretical calculations of transition state structures. [Pg.302]

The carbo-Diels-Alder reaction of acrolein with butadiene (Scheme 8.1) has been the standard reaction studied by theoretical calculations in order to investigate the influence of Lewis acids on the reaction course and several papers deal with this reaction. As an extension of an ab-initio study of the carbo-Diels-Alder reaction of butadiene with acrolein [5], Houk et al. investigated the transition-state structures and the origins of selectivity of Lewis acid-catalyzed carbo-Diels-Alder reactions [6]. Four different transition-state structures were considered (Fig. 8.4). Acrolein can add either endo (N) or exo (X), in either s-cis (C) or s-trans (T), and the Lewis acid coordinates to the carbonyl in the molecular plane, either syn or anti to the alkene. [Pg.305]

Different color transitions are obtained by simply changing the molecular structure of the polythiophene and then oxidizing or reducing it. Figure C. p. 93. shows the different colors obtained by taking the neutral form... [Pg.92]

Keywords abinitio methods, FMO (molecular orbital), hefero-Diels-Alder reaction, transition state structure... [Pg.310]

Since the vibrational spectra of sulfur allotropes are characteristic for their molecular and crystalline structure, vibrational spectroscopy has become a valuable tool in structural studies besides X-ray diffraction techniques. In particular, Raman spectroscopy on sulfur samples at high pressures is much easier to perform than IR spectroscopical studies due to technical demands (e.g., throughput of the IR beam, spectral range in the far-infrared). On the other hand, application of laser radiation for exciting the Raman spectrum may cause photo-induced structural changes. High-pressure phase transitions and structures of elemental sulfur at high pressures were already discussed in [1]. [Pg.82]

Currently, theories are not yet able to predict the transition temperatures based on molecular structure of the constituent molecules. However, for several compounds there is considerable empirical data relating the transition temperature between isotropic and nematic phases (Tni) to molecular structure. Higher implies greater nematic stability. For example, it is... [Pg.11]

The rapid rise in computer speed over recent years has led to atom-based simulations of liquid crystals becoming an important new area of research. Molecular mechanics and Monte Carlo studies of isolated liquid crystal molecules are now routine. However, care must be taken to model properly the influence of a nematic mean field if information about molecular structure in a mesophase is required. The current state-of-the-art consists of studies of (in the order of) 100 molecules in the bulk, in contact with a surface, or in a bilayer in contact with a solvent. Current simulation times can extend to around 10 ns and are sufficient to observe the growth of mesophases from an isotropic liquid. The results from a number of studies look very promising, and a wealth of structural and dynamic data now exists for bulk phases, monolayers and bilayers. Continued development of force fields for liquid crystals will be particularly important in the next few years, and particular emphasis must be placed on the development of all-atom force fields that are able to reproduce liquid phase densities for small molecules. Without these it will be difficult to obtain accurate phase transition temperatures. It will also be necessary to extend atomistic models to several thousand molecules to remove major system size effects which are present in all current work. This will be greatly facilitated by modern parallel simulation methods that allow molecular dynamics simulations to be carried out in parallel on multi-processor systems [115]. [Pg.61]

In the theory of radiationless transitions as covered in this paper (6,4g), the two non BO terms are treated as perturbations (not externally plied, but arising as imperfections within this model of molecular structure) that can induce transitions between unperturbed states each of which is taken to be a specific Bom-Oppenheimer product state ... [Pg.288]


See other pages where Molecular structures transitions is mentioned: [Pg.198]    [Pg.198]    [Pg.282]    [Pg.1243]    [Pg.2341]    [Pg.434]    [Pg.359]    [Pg.389]    [Pg.348]    [Pg.16]    [Pg.202]    [Pg.306]    [Pg.212]    [Pg.46]    [Pg.45]    [Pg.62]    [Pg.314]    [Pg.176]    [Pg.89]    [Pg.535]    [Pg.483]    [Pg.103]    [Pg.151]    [Pg.242]    [Pg.95]    [Pg.2]    [Pg.4]    [Pg.3]    [Pg.6]    [Pg.58]    [Pg.92]    [Pg.155]    [Pg.199]   
See also in sourсe #XX -- [ Pg.127 , Pg.299 ]

See also in sourсe #XX -- [ Pg.127 ]




SEARCH



Determination of polymer transitions and investigations into molecular structure

Glass transition relationships with molecular structure

Glass transition temperature molecular structure

Molecular Structures II Compounds of Transition Metals

Molecular Structures of Transition Metal Complexes

Molecular transition

Potential Energy Surface Molecular Structure, Transition States, and Reaction Paths

Pressure-Induced Structural Transition of Protein and Molecular Recognition

Relationship between Molecular Structure and Transition Temperatures for Calamitic Structures

Structural Insight into Transition Metal Oxide Containing Glasses by Molecular Dynamic Simulations

Transition metals molecular structures

Transition structure molecular mechanics

© 2024 chempedia.info