Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metals, electrodeposition

Chloroaluminate(III) ionic liquid systems are perhaps the best established and have been most extensively studied in the development of low-melting organic ionic liquids with particular emphasis on electrochemical and electrodeposition applications, transition metal coordination chemistry, and in applications as liquid Lewis acid catalysts in organic synthesis. Variable and tunable acidity, from basic through neutral to acidic, allows for some very subtle changes in transition metal coordination chemistry. The melting points of [EMIM]C1/A1C13 mixtures can be as low as -90 °C, and the upper liquid limit almost 300 °C [4, 6]. [Pg.43]

A series of Be-Pt intermetallic compounds arc prepared during the electrodeposition of Be on Pt from a solution of BeCl2 in an equimol NaCl-KCl mixture at 710°C. X-Ray diffraction of the electrode surface shows the presence of BePt, BcjPt. Electrolytic methods are also used to extract single crystals of Be,V from alloys prepared by arc melting Be and the transition metal in the proportion 15 1. [Pg.471]

Electrodeposition of Transition Metal-Aluminum Alloys from Chloroaluminate Molten Salts... [Pg.275]

Relatively little attention has been devoted to the direct electrodeposition of transition metal-aluminum alloys in spite of the fact that isothermal electrodeposition leads to coatings with very uniform composition and structure and that the deposition current gives a direct measure of the deposition rate. Unfortunately, neither aluminum nor its alloys can be electrodeposited from aqueous solutions because hydrogen is evolved before aluminum is plated. Thus, it is necessary to employ nonaqueous solvents (both molecular and ionic) for this purpose. Among the solvents that have been used successfully to electrodeposit aluminum and its transition metal alloys are the chloroaluminate molten salts, which consist of inorganic or organic chloride salts combined with anhydrous aluminum chloride. An introduction to the chemical, electrochemical, and physical properties of the most commonly used chloroaluminate melts is given below. [Pg.277]

In many ways, chloroaluminate molten salts are ideal solvents for the electrodeposition of transition metal-aluminum alloys because they constitute a reservoir of reducible aluminum-containing species, they are excellent solvents for many transition metal ions, and they exhibit good intrinsic ionic conductivity. In fact, the first organic salt-based chloroaluminate melt, a mixture of aluminum chloride and 1-ethylpyridinium bromide (EtPyBr), was formulated as a solvent for electroplating aluminum [55, 56] and subsequently used as a bath to electroform aluminum waveguides [57], Since these early articles, numerous reports have been published that describe the electrodeposition of aluminum from this and related chloroaluminate systems for examples, see Liao et al. [58] and articles cited therein. [Pg.285]


See other pages where Transition metals, electrodeposition is mentioned: [Pg.285]    [Pg.249]    [Pg.285]    [Pg.249]    [Pg.77]    [Pg.495]    [Pg.275]    [Pg.281]    [Pg.285]    [Pg.285]    [Pg.286]    [Pg.297]    [Pg.311]    [Pg.338]    [Pg.338]    [Pg.339]   
See also in sourсe #XX -- [ Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.124 , Pg.125 ]




SEARCH



Electrodeposition

Electrodeposits

Metals electrodeposition

© 2024 chempedia.info