Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rearrangement transition metal complexes

Schmidt reaction of ketones, 7, 530 from thienylnitrenes, 4, 820 tautomers, 7, 492 thermal reactions, 7, 503 transition metal complexes reactivity, 7, 28 tungsten complexes, 7, 523 UV spectra, 7, 501 X-ray analysis, 7, 494 1 H-Azepines conformation, 7, 492 cycloaddition reactions, 7, 520, 522 dimerization, 7, 508 H NMR, 7, 495 isomerization, 7, 519 metal complexes, 7, 512 photoaddition reactions with oxygen, 7, 523 protonation, 7, 509 ring contractions, 7, 506 sigmatropic rearrangements, 7, 506 stability, 7, 492 N-substituted mass spectra, 7, 501 rearrangements, 7, 504 synthesis, 7, 536-537... [Pg.524]

Tautomeric rearrangements of transition-metal complexes with azole ligands are relatively scarce. The fluxional behavior of the rhodium complex 43 with a neutral 3,5-dimethylpyrazole was explained as the result of rapid processes of metallotropy and prototropy occurring simultaneously (Scheme 24) [74JOM(C)51],... [Pg.200]

Besides dissociation of ligands, photoexcitation of transition metal complexes can facilitate (1) - oxidative addition to metal atoms of C-C, C-H, H-H, C-Hal, H-Si, C-0 and C-P moieties (2) - reductive elimination reactions, forming C-C, C-H, H-H, C-Hal, Hal-Hal and H-Hal moieties (3) - various rearrangements of atoms and chemical bonds in the coordination sphere of metal atoms, such as migratory insertion to C=C bonds, carbonyl and carbenes, ot- and P-elimination, a- and P-cleavage of C-C bonds, coupling of various moieties and bonds, isomerizations, etc. (see [11, 12] and refs, therein). [Pg.38]

In the presence of transition-metal complexes, organic compounds that are unsaturated or strained often rearrange themselves. One synthetically useful transition-metal catalyzed isomerization is the olefin migration reaction. Two general mechanisms have been proposed for olefin migrations, depending on the type of catalyst employed (A and B) (Scheme 3.8).137... [Pg.71]

Other organosilicon polymer precursors for ceramics have either been prepared or improved by means of transition metal complex-catalyzed chemistry. For instance, the Nicalon silicon carbide-based ceramic fibers are fabricated from a polycarbosilane that is produced by thermal rearrangement of poly(dimethylsilylene) [18]. The CH3(H)SiCH2 group is the major constituent of this polycarbosilane. [Pg.272]

The transition-metal induced rearrangement of strained cyclopropanes is mostly caused by inserting metal atoms into a three-membered ring, thus producing metallacycles and/or rf- allyl metal complexes. Tipper reported the first example of the metallacycles obtained from [Pt(C2H4)Cl2]2 [3]. The stereospecific addition of cyclopropanes has been investigated from both mechanistic and synthetic view points [4],... [Pg.108]

Molecular Rearrangements in Polynuclear Transition Metal Complexes, 16, 319... [Pg.510]

The ability of transition-metal complexes to activate substrates such as alkenes and dihydrogen with respect to low-barrier bond rearrangements underlies a large number of important catalytic transformations, such as hydrogenation and hydroformy-lation of alkenes. However, activation alone is insufficient if it is indiscriminate. In this section we examine a particularly important class of alkene-polymerization catalysts that exhibit exquisite control of reaction stereoselectivity and regioselec-tivity as well as extraordinary catalytic power, the foundation for modern industries based on inexpensive tailored polymers. [Pg.509]

The abundance of accessible donor and acceptor orbitals in common transition-metal complexes facilitates low-energy bond rearrangements such as insertion ( oxidative-addition ) reactions, thus enabling the critically important catalytic potential of metals. [Pg.574]

Since the pioneering work by Sarel and co-workers on the iron carbonyl promoted transformation of vinylcyclopropanes and related compounds [1], a variety of transition metal complexes have been examined to achieve effective activation of the vinylcyclopropane-cyclopentene rearrangement which usually requires pyrolytic conditions. These reactions have been applied to natural product synthesis in some cases and have already been reviewed in several excellent articles [2-4]. [Pg.70]

Metallotropic rearrangement, in mercury tri-azenide complexes, 30 41 Metals, see also Heterobimetallics specific element Transition metal complex alkoxides, 15 159-297 of actinides, 15 290-293 of alkali metals, 15 260-263 of alkaline earths, 15 264-266 of aluminium, 15 266-272 of beryllium, 15 264-266 double type, 15 293-294 of gallium, 15 266-272 of lanthanides, 15 290-293 of magnesium, 15 264-266 properties of, 15 260 of transition metals, 15 272-290 trialkylsilyloxides, 15 295-297 of zinc, 15 264-266... [Pg.177]

It appears likely that transient metallacyclobutanes are involved in a variety of organic reactions which are catalyzed by transition metal complexes. Thus, cycloadditions of activated alkenes to strained hydrocarbons such as quadricyclane and bicyclo[2.1.0]pentane are catalyzed by complexes such as Ni(CH2=CHCN)2 and probably involve initial formation of a nickelacyclobutane (Scheme 2) (79MI12200). The nature of the organometallic intermediates in related metal-catalyzed rearrangements (72JA7757) and retro-cyclo-addition reactions (76JA6057) of cyclopropanoid hydrocarbons, e.g. bicyclo[n.l.O]alkanes, has been discussed. [Pg.668]

Anionic Rearrangement of Organosilicon and Germanium Compounds, 16, I Application of, 3C-NMR Spectroscopy to Organo-Transition Metal Complexes, 19, 257 Applications of """Sn Mdssbauer Spectroscopy to the Study of Oiganotin Compounds, 9, 21... [Pg.323]

Molecular Rearrangements in Polynuclear Transition Metal Complexes, 16, 319 Multiply Bonded Germanium Species, 21, 241 Nitrogen Groups in Metal Carbonyl and Related Complexes, 10, 115 Nitrosyls, 7, 211... [Pg.324]

Since the a- and n forms of a transition metal complex would be expected to differ only slightly in such physical properties as ligation and solvation and lattice energies, the predominance of one form or the other must be primarily due to the nature of the metal-ligand bonding. There are three alternate explanations of the proclivity to cr-v or n-cr rearrangement in terms of bonding. These are summarized as follows. [Pg.228]


See other pages where Rearrangement transition metal complexes is mentioned: [Pg.592]    [Pg.106]    [Pg.85]    [Pg.80]    [Pg.847]    [Pg.511]    [Pg.111]    [Pg.159]    [Pg.199]    [Pg.82]    [Pg.403]    [Pg.434]    [Pg.275]    [Pg.399]    [Pg.186]    [Pg.549]    [Pg.166]    [Pg.592]    [Pg.61]    [Pg.512]    [Pg.572]    [Pg.512]    [Pg.572]    [Pg.116]   
See also in sourсe #XX -- [ Pg.495 , Pg.497 ]

See also in sourсe #XX -- [ Pg.2 , Pg.382 ]




SEARCH



1.2- metallate rearrangement

Carbenes, complexes with transition metals rearrangement

Molecular Rearrangements in Polynuclear Transition Metal Complexes

Polynuclear transition metal complexes molecular rearrangements

Rearrangements complex

Transition 2,3]-rearrangement

Transition metal complexes Claisen rearrangement

© 2024 chempedia.info