Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal complexes numbers

A large number of organometallic compounds are based on transition metals Examples include organic derivatives of iron nickel chromium platinum and rhodium Many important industrial processes are catalyzed by transition metals or their complexes Before we look at these processes a few words about the structures of transition metal complexes are m order... [Pg.608]

Eor transition metal complexes the number of ligands that can be attached to a metal will be such that the sum of the electrons brought by the ligands plus the valence electrons of the metal equals 18... [Pg.608]

With an atomic number of 28 nickel has the electron conflguration [Ar]4s 3c (ten valence electrons) The 18 electron rule is satisfied by adding to these ten the eight elec Irons from four carbon monoxide ligands A useful point to remember about the 18 electron rule when we discuss some reactions of transition metal complexes is that if the number is less than 18 the metal is considered coordinatively unsaturated and can accept additional ligands... [Pg.608]

Tertiary stibines have been widely employed as ligands in a variety of transition metal complexes (99), and they appear to have numerous uses in synthetic organic chemistry (66), eg, for the olefination of carbonyl compounds (100). They have also been used for the formation of semiconductors by the metal—organic chemical vapor deposition process (101), as catalysts or cocatalysts for a number of polymerization reactions (102), as ingredients of light-sensitive substances (103), and for many other industrial purposes. [Pg.207]

For many species the effective atomic number (FAN) or 18- electron rule is helpful. Low spin transition-metal complexes having the FAN of the next noble gas (Table 5), which have 18 valence electrons, are usually inert, and normally react by dissociation. Fach normal donor is considered to contribute two electrons the remainder are metal valence electrons. Sixteen-electron complexes are often inert, if these are low spin and square-planar, but can undergo associative substitution and oxidative-addition reactions. [Pg.170]

A number of transition-metal complexes of RNSO ligands have been structurally characterized. Three bonding modes, r(A,5), o-(5)-trigonal and o (5 )-pyramidal, have been observed (Scheme 9.1). Side-on (N,S) coordination is favoured by electron-rich (et or j °) metal centers, while the ff(S)-trigonal mode is preferred for less electron-rich metal centres (or those with competitive strong r-acid co-ligands). As expected ti (N,S)... [Pg.169]

Click Coached Problems for a self-study module on formules end oxidation numbers in transition metal complexes. [Pg.545]

Although the number of applications of olefin metathesis to transition metal complexes is small compared to the number of applications in organic synthesis, this field is becoming increasingly important. Spectacular examples are the double RCM reactions of copper phenanthroline complexes as a synthetic route to catenanes [113] or a recently reported approach to steric shielding of rhenium complex terminated sp-carbon chains [114]. [Pg.258]

Coordination-catalyzed ethylene oligomerization into n-a-olefins. The synthesis of homologous, even-numbered, linear a-olefins can also be performed by oligomerization of ethylene with the aid of homogeneous transition metal complex catalysts [26]. Such a soluble complex catalyst is formed by reaction of, say, a zero-valent nickel compound with a tertiary phosphine ligand. A typical Ni catalyst for the ethylene oligomerization is manufactured from cyclo-octadienyl nickel(O) and diphenylphosphinoacetic ester ... [Pg.14]

The dominant features which control the stoichiometry of transition-metal complexes relate to the relative sizes of the metal ions and the ligands, rather than the niceties of electronic configuration. You will recall that the structures of simple ionic solids may be predicted with reasonable accuracy on the basis of radius-ratio rules in which the relative ionic sizes of the cations and anions in the lattice determine the structure adopted. Similar effects are important in determining coordination numbers in transition-metal compounds. In short, it is possible to pack more small ligands than large ligands about a metal ion of a given size. [Pg.167]

Slovokhotov, Yu.L. and Struchkov, Yu.T (1984) X-ray crystal structure of a distorted tetrahedral cluster in the salt [(Ph P)4Au4N] BF4 . Geometrical indication of stable electronic configurations in post-transition metal complexes and the magic number 18-e in centred gold clusters. Journal of Organometallic Chemistry, 177, 143-146. [Pg.234]


See other pages where Transition metal complexes numbers is mentioned: [Pg.1142]    [Pg.259]    [Pg.608]    [Pg.295]    [Pg.275]    [Pg.262]    [Pg.436]    [Pg.395]    [Pg.608]    [Pg.181]    [Pg.922]    [Pg.1236]    [Pg.121]    [Pg.154]    [Pg.99]    [Pg.114]    [Pg.11]    [Pg.19]    [Pg.36]    [Pg.77]    [Pg.96]    [Pg.170]    [Pg.157]    [Pg.158]    [Pg.78]    [Pg.294]    [Pg.197]    [Pg.241]    [Pg.89]    [Pg.464]    [Pg.853]    [Pg.17]    [Pg.181]    [Pg.4]    [Pg.53]    [Pg.83]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Complex numbers

Coordination number, transition metal nitrosyl complexes

© 2024 chempedia.info