Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition hydrocarbons

From complex cuts characterized in an overall manner, there is a transition towards mixtures containing only a limited number of hydrocarbon families or even compounds. This development has only just begun. It affects for the moment only certain products and certain geographical zones. It is leading gradually to a different view of both refining and the characterization of petroleum products. [Pg.484]

An essential component of cell membranes are the lipids, lecithins, or phosphatidylcholines (PC). The typical ir-a behavior shown in Fig. XV-6 is similar to that for the simple fatty-acid monolayers (see Fig. IV-16) and has been modeled theoretically [36]. Branched hydrocarbons tails tend to expand the mono-layer [38], but generally the phase behavior is described by a fluid-gel transition at the plateau [39] and a semicrystalline phase at low a. As illustrated in Fig. XV-7, the areas of the dense phase may initially be highly branched, but they anneal to a circular shape on recompression [40]. The theoretical evaluation of these shape transitions is discussed in Section IV-4F. [Pg.544]

The reactivity of size-selected transition-metal cluster ions has been studied witli various types of mass spectrometric teclmiques [1 ]. Fourier-transfonn ion cyclotron resonance (FT-ICR) is a particularly powerful teclmique in which a cluster ion can be stored and cooled before experimentation. Thus, multiple reaction steps can be followed in FT-ICR, in addition to its high sensitivity and mass resolution. Many chemical reaction studies of transition-metal clusters witli simple reactants and hydrocarbons have been carried out using FT-ICR [49, 58]. [Pg.2394]

A different kind of shape selectivity is restricted transition state shape selectivity. It is related not to transport restrictions but instead to size restrictions of the catalyst pores, which hinder the fonnation of transition states that are too large to fit thus reactions proceeding tiirough smaller transition states are favoured. The catalytic activities for the cracking of hexanes to give smaller hydrocarbons, measured as first-order rate constants at 811 K and atmospheric pressure, were found to be the following for the reactions catalysed by crystallites of HZSM-5 14 n-... [Pg.2712]

The physical and chemical properties are less well known for transition metals than for the alkaU metal fluoroborates (Table 4). Most transition-metal fluoroborates are strongly hydrated coordination compounds and are difficult to dry without decomposition. Decomposition frequently occurs during the concentration of solutions for crysta11i2ation. The stabiUty of the metal fluorides accentuates this problem. Loss of HF because of hydrolysis makes the reaction proceed even more rapidly. Even with low temperature vacuum drying to partially solve the decomposition, the dry salt readily absorbs water. The crystalline soflds are generally soluble in water, alcohols, and ketones but only poorly soluble in hydrocarbons and halocarbons. [Pg.167]

Below a certain critical temperature, which varies with pressure and stoichiometry, cool flames for several hydrocarbons propagate from the wall inward above this temperature, they propagate from the center of the vessel (78). This transition is interpreted as evidence for a changeover from a predominantly heterogeneous preflame mechanism to a homogeneous one. [Pg.340]

Ethane. Ethane VPO occurs at lower temperatures than methane oxidation but requires higher temperatures than the higher hydrocarbons (121). This is a transition case with mixed characteristics. Low temperature VPO, cool flames, oscillations, and a NTC region do occur. At low temperatures and pressures, the main products are formaldehyde, acetaldehyde (HCHOiCH CHO ca 5) (121—123), and carbon monoxide. These products arise mainly through ethylperoxy and ethoxy radicals (see eqs. 2 and 12—16 and Fig. 1). [Pg.341]

As appHed to hydrocarbon resins, dsc is mainly used for the determination of glass-transition temperatures (7p. Information can also be gained as to the physical state of a material, ie, amorphous vs crystalline. As a general rule of thumb, the T of a hydrocarbon resin is approximately 50°C below the softening point. Oxidative induction times, which are also deterrnined by dsc, are used to predict the relative oxidative stabiHty of a hydrocarbon resin. [Pg.350]

Stabilized lithium acetyhde is not pyrophoric or shock-sensitive as are the transition-metal acetyhdes. Among its uses are ethynylation of halogenated hydrocarbons to give long-chain acetylenes (132) and ethynylation of ketosteroids and other ketones in the pharmaceutical field to yield the respective ethynyl alcohols (133) (see Acetylene-derived chemicals). [Pg.229]

Photochromism Based on Triplet Formation. Upon absorption of light, many polycycHc aromatic hydrocarbons and their heterocycHc analogues undergo transitions to their triplet state which has an absorption spectmm different from that of the ground state (24). In rigid glasses and some plastics, the triplet state, which may absorb in the visible, has a lifetime of up to 20 seconds. [Pg.163]

This combination of monomers is unique in that the two are very different chemically, and in thek character in a polymer. Polybutadiene homopolymer has a low glass-transition temperature, remaining mbbery as low as —85° C, and is a very nonpolar substance with Htde resistance to hydrocarbon fluids such as oil or gasoline. Polyacrylonitrile, on the other hand, has a glass temperature of about 110°C, and is very polar and resistant to hydrocarbon fluids (see Acrylonitrile polymers). As a result, copolymerization of the two monomers at different ratios provides a wide choice of combinations of properties. In addition to providing the mbbery nature to the copolymer, butadiene also provides residual unsaturation, both in the main chain in the case of 1,4, or in a side chain in the case of 1,2 polymerization. This residual unsaturation is useful as a cure site for vulcanization by sulfur or by peroxides, but is also a weak point for chemical attack, such as oxidation, especially at elevated temperatures. As a result, all commercial NBR products contain small amounts ( 0.5-2.5%) of antioxidant to protect the polymer during its manufacture, storage, and use. [Pg.516]

Hydrated bilayers containing one or more lipid components are commonly employed as models for biological membranes. These model systems exhibit a multiplicity of structural phases that are not observed in biological membranes. In the state that is analogous to fluid biological membranes, the liquid crystal or La bilayer phase present above the main bilayer phase transition temperature, Ta, the lipid hydrocarbon chains are conforma-tionally disordered and fluid ( melted ), and the lipids diffuse in the plane of the bilayer. At temperatures well below Ta, hydrated bilayers exist in the gel, or Lp, state in which the mostly all-trans chains are collectively tilted and pack in a regular two-dimensional... [Pg.465]

Before providing such an explanation it should first be noted that progressive addition of a plasticiser causes a reduction in the glass transition temperature of the polymer-plasticiser blend which eventually will be rubbery at room temperature. This suggests that plasticiser molecules insert themselves between polymer molecules, reducing but not eliminating polymer-polymer contacts and generating additional free volume. With traditional hydrocarbon softeners as used in diene rubbers this is probably almost all that happens. However, in the... [Pg.88]

This process has many similarities to the Phillips process and is based on the use of a supported transition metal oxide in combination with a promoter. Reaction temperatures are of the order of 230-270°C and pressures are 40-80 atm. Molybdenum oxide is a catalyst that figures in the literature and promoters include sodium and calcium as either metals or as hydrides. The reaction is carried out in a hydrocarbon solvent. [Pg.211]

Poly(vinyl chloride) has a good resistance to hydrocarbons but some plasticisers, particularly the less polar ones such as dibutyl sebacate, are extracted by materials such as iso-octane. The polymer is also resistant to most aqueous solutions, including those of alkalis and dilute mineral acids. Below the second order transition temperature, poly(vinyl chloride) compounds are reasonably good electrical insulators over a wide range of frequencies but above the second order transition temperature their value as an insulator is limited to low-frequency applications. The more plasticiser present, the lower the volume resistivity. [Pg.345]

Fig. 23. Evolution of the glass transition temperature of polychloroprene-aromatic hydrocarbon resin blends as a function of the resin content. values were obtained from DSC experiments. Fig. 23. Evolution of the glass transition temperature of polychloroprene-aromatic hydrocarbon resin blends as a function of the resin content. values were obtained from DSC experiments.

See other pages where Transition hydrocarbons is mentioned: [Pg.317]    [Pg.1137]    [Pg.2626]    [Pg.2631]    [Pg.2790]    [Pg.316]    [Pg.417]    [Pg.23]    [Pg.167]    [Pg.114]    [Pg.133]    [Pg.138]    [Pg.88]    [Pg.565]    [Pg.44]    [Pg.358]    [Pg.248]    [Pg.325]    [Pg.22]    [Pg.261]    [Pg.485]    [Pg.544]    [Pg.270]    [Pg.19]    [Pg.19]    [Pg.304]    [Pg.127]    [Pg.485]    [Pg.490]    [Pg.62]    [Pg.309]    [Pg.548]    [Pg.557]    [Pg.620]    [Pg.624]   
See also in sourсe #XX -- [ Pg.74 ]

See also in sourсe #XX -- [ Pg.74 ]




SEARCH



© 2024 chempedia.info