Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition detennination

Figure Al.6.21. Bra and ket wavepacket dynamics which detennine the coherence overlap, (( ) ( ) ). Vertical arrows mark the transitions between electronic states and horizontal arrows indicate free propagation on the potential surface. Full curves are used for the ket wavepacket, while dashed curves indicate the bra wavepacket. (a) Stimulated emission, (b) Excited state (transient) absorption (from [41]). Figure Al.6.21. Bra and ket wavepacket dynamics which detennine the coherence overlap, (( ) ( ) ). Vertical arrows mark the transitions between electronic states and horizontal arrows indicate free propagation on the potential surface. Full curves are used for the ket wavepacket, while dashed curves indicate the bra wavepacket. (a) Stimulated emission, (b) Excited state (transient) absorption (from [41]).
However, with the advent of lasers, the teclmique of laser-induced fluorescence (LIF) has probably become the single most popular means of detennining product-state distributions an early example is the work by Zare and co-workers on Ba + FLT (X= F, Cl, Br, I) reactions [25]. Here, a tunable laser excites an electronic transition of one of the products (the BaX product in this example), and the total fluorescence is detected as a... [Pg.873]

Typically, the ratio of this to the incident flux detennines the transition probability. This infonnation will be averaged over the energy range of the initial wavepacket, unless one wants to project out specific energies from the solution. This projection procedure is accomplished using the following expression for the energy resolved (tune-independent) wavefunction in tenns in tenns of its time-dependent counterpart ... [Pg.981]

This is connnonly known as the transition state theory approximation to the rate constant. Note that all one needs to do to evaluate (A3.11.187) is to detennine the partition function of the reagents and transition state, which is a problem in statistical mechanics rather than dynamics. This makes transition state theory a very usefiil approach for many applications. However, what is left out are two potentially important effects, tiiimelling and barrier recrossing, bodi of which lead to CRTs that differ from the sum of step frmctions assumed in (A3.11.1831. [Pg.993]

Only in the high-energy limit does classical statistical mechanics give accurate values for the sum and density of states tenns in equation (A3.12.15) [3,14]. Thus, to detennine an accurate RRKM lc(E) for the general case, quantum statistical mechanics must be used. Since it is difficult to make anliannonic corrections, both the molecule and transition state are often assumed to be a collection of hannonic oscillators for calculating the... [Pg.1018]

Detailed analyses of the above experiments suggest that the apparent steps in k E) may not arise from quantized transition state energy levels [110.111]. Transition state models used to interpret the ketene and acetaldehyde dissociation experiments are not consistent with the results of high-level ab initio calculations [110.111]. The steps observed for NO2 dissociation may originate from the opening of electronically excited dissociation chaimels [107.108]. It is also of interest that RRKM-like steps in k E) are not found from detailed quantum dynamical calculations of unimolecular dissociation [91.101.102.112]. More studies are needed of unimolecular reactions near tln-eshold to detennine whether tiiere are actual quantized transition states and steps in k E) and, if not, what is the origin of the apparent steps in the above measurements of k E). [Pg.1035]

Transition intensities are detennined by the wavefiinctions of the initial and final states as described in the last sections. In many systems there are some pairs of states for which tire transition moment integral vanishes while for other pairs it does not vanish. The temi selection rule refers to a simnnary of the conditions for non-vanishing transition moment integrals—hence observable transitions—or vanishing integrals so no observable transitions. We discuss some of these rules briefly in this section. Again, we concentrate on electric dipole transitions. [Pg.1133]

The synnnetry selection rules discussed above tell us whether a particular vibronic transition is allowed or forbidden, but they give no mfonnation about the intensity of allowed bands. That is detennined by equation (Bl.1.9) for absorption or (Bl.1.13) for emission. That usually means by the Franck-Condon principle if only the zero-order tenn in equation (B 1.1.7) is needed. So we take note of some general principles for Franck-Condon factors (FCFs). [Pg.1138]

Figure Bl.4.5. The Lamb dip spectrum of the CO 6-5 transition obtained with the Cologne THz BWO spectrometer. The dip is of order 30-40 kHz in width and the transition frequency is detennined to 0.5 kHz [M]. Figure Bl.4.5. The Lamb dip spectrum of the CO 6-5 transition obtained with the Cologne THz BWO spectrometer. The dip is of order 30-40 kHz in width and the transition frequency is detennined to 0.5 kHz [M].
Satellite transition MAS NMR provides an alternative method for detennining the interactions. The intensity envelope of the spimiing sidebands are dominated by site A2 (using the crystal structure nomenclature) which has the smallest Cq, resulting in the intensity for the transitions of this site being spread over the smallest... [Pg.1492]

The phase of a transition in a CIDNP speetnim ean be detennined rising niles developed by Kaptein [20]. The nile for the net effeet is shown in equation (Bl.16.6). For eaeh tenn, the sign (-t or -) of that value is inserted, and the final sign detennines the phase of the polarization phis is absorptive and minns is emissive. The variables are defined in the eaption to figure B 1.16.7. [Pg.1599]

Figure Bl.22.10. Carbon K-edge near-edge x-ray absorption (NEXAFS) speetra as a fiinotion of photon ineidenee angle from a submonolayer of vinyl moieties adsorbed on Ni(lOO) (prepared by dosing 0.2 1 of ethylene on that surfaee at 180 K). Several eleetronie transitions are identified in these speetra, to both the pi (284 and 286 eV) and the sigma (>292 eV) imoeeupied levels of the moleeule. The relative variations in the intensities of those peaks with ineidenee angle ean be easily eonverted into adsorption geometry data the vinyl plane was found in this ease to be at a tilt angle of about 65° from the surfaee [71], Similar geometrieal detenninations using NEXAFS have been earried out for a number of simple adsorbate systems over the past few deeades. Figure Bl.22.10. Carbon K-edge near-edge x-ray absorption (NEXAFS) speetra as a fiinotion of photon ineidenee angle from a submonolayer of vinyl moieties adsorbed on Ni(lOO) (prepared by dosing 0.2 1 of ethylene on that surfaee at 180 K). Several eleetronie transitions are identified in these speetra, to both the pi (284 and 286 eV) and the sigma (>292 eV) imoeeupied levels of the moleeule. The relative variations in the intensities of those peaks with ineidenee angle ean be easily eonverted into adsorption geometry data the vinyl plane was found in this ease to be at a tilt angle of about 65° from the surfaee [71], Similar geometrieal detenninations using NEXAFS have been earried out for a number of simple adsorbate systems over the past few deeades.
Accurate enthalpies of solid-solid transitions and solid-liquid transitions (fiision) are usually detennined in an adiabatic heat capacity calorimeter. Measurements of lower precision can be made with a differential scaiming calorimeter (see later). Enthalpies of vaporization are usually detennined by the measurement of the amount of energy required to vaporize a known mass of sample. The various measurement methods have been critically reviewed by Majer and Svoboda [9]. The actual teclmique used depends on the vapour pressure of the material. Methods based on... [Pg.1910]

Figure B2.5.12 shows the energy-level scheme of the fine structure and hyperfme structure levels of iodine. The corresponding absorption spectrum shows six sharp hyperfme structure transitions. The experimental resolution is sufficient to detennine the Doppler line shape associated with the velocity distribution of the I atoms produced in the reaction. In this way, one can detennine either the temperature in an oven—as shown in Figure B2.5.12 —or the primary translational energy distribution of I atoms produced in photolysis, equation B2.5.35. Figure B2.5.12 shows the energy-level scheme of the fine structure and hyperfme structure levels of iodine. The corresponding absorption spectrum shows six sharp hyperfme structure transitions. The experimental resolution is sufficient to detennine the Doppler line shape associated with the velocity distribution of the I atoms produced in the reaction. In this way, one can detennine either the temperature in an oven—as shown in Figure B2.5.12 —or the primary translational energy distribution of I atoms produced in photolysis, equation B2.5.35.
Our intention is to give a brief survey of advanced theoretical methods used to detennine the electronic and geometric stmcture of solids and surfaces. The electronic stmcture encompasses the energies and wavefunctions (and other properties derived from them) of the electronic states in solids, while the geometric stmcture refers to the equilibrium atomic positions. Quantities that can be derived from the electronic stmcture calculations include the electronic (electron energies, charge densities), vibrational (phonon spectra), stmctiiral (lattice constants, equilibrium stmctiires), mechanical (bulk moduli, elastic constants) and optical (absorption, transmission) properties of crystals. We will also report on teclmiques used to study solid surfaces, with particular examples drawn from chemisorption on transition metal surfaces. [Pg.2201]

The polarization properties of single-molecule fluorescence excitation spectra have been explored and utilized to detennine botli tlie molecular transition dipole moment orientation and tlie deptli of single pentacene molecules in a /7-teriDhenyl crystal, taking into account tlie rotation of tlie polarization of tlie excitation light by tlie birefringent... [Pg.2494]

The basic features of folding can be understood in tenns of two fundamental equilibrium temperatures that detennine tire phases of tire system [7]. At sufficiently high temperatures (JcT greater tlian all tire attractive interactions) tire shape of tire polypeptide chain can be described as a random coil and hence its behaviour is tire same as a self-avoiding walk. As tire temperature is lowered one expects a transition at7 = Tq to a compact phase. This transition is very much in tire spirit of tire collapse transition familiar in tire theory of homopolymers [10]. The number of compact... [Pg.2650]

The key question we want to answer is what are the intrinsic sequence dependent factors tliat not only detennine tire folding rates but also tire stability of tire native state It turns out tliat many of tire global aspects of tire folding kinetics of proteins can be understood in tenns of tire equilibrium transition temperatures. In particular, we will show tliat tire key factor tliat governs tire foldability of sequences is tire single parameter... [Pg.2651]

For many practically relevant material/environment combinations, thennodynamic stability is not provided, since E > E. Hence, a key consideration is how fast the corrosion reaction proceeds. As for other electrochemical reactions, a variety of factors can influence the rate detennining step. In the most straightforward case the reaction is activation energy controlled i.e. the ion transfer tlrrough the surface Helmholtz double layer involving migration and the adjustment of the hydration sphere to electron uptake or donation is rate detennining. The transition state is... [Pg.2717]


See other pages where Transition detennination is mentioned: [Pg.115]    [Pg.123]    [Pg.141]    [Pg.180]    [Pg.483]    [Pg.871]    [Pg.1023]    [Pg.1124]    [Pg.1136]    [Pg.1243]    [Pg.1308]    [Pg.1323]    [Pg.1478]    [Pg.1485]    [Pg.1490]    [Pg.1554]    [Pg.1757]    [Pg.1786]    [Pg.1792]    [Pg.1822]    [Pg.2061]    [Pg.2078]    [Pg.2312]    [Pg.2439]    [Pg.2473]    [Pg.2497]    [Pg.2557]    [Pg.2650]    [Pg.2650]    [Pg.2657]    [Pg.2712]    [Pg.2747]   
See also in sourсe #XX -- [ Pg.88 , Pg.272 ]




SEARCH



Detennination

© 2024 chempedia.info