Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transformation centering

Once the data clean-up has been completed during the pre-processing phase, the finalized matrix, with the samples in rows and the metabolites in columns, can be obtained. The metabolite variables can be coded in different ways as a function of the extraction methods used and the problems binary coding in presence/absence, relative or absolute abundance, quantity in percentage of the total. In the latter case, the metabolite variables are dependent on one another. When the data are coded in abundance, it is possible to carry out logarithmic t5q)e transformations, centering and reduction, to improve the implementation of the statistical analyses. [Pg.146]

A phase change takes place when one enantiomer is converted to its optical isomer. As illustrated in Figure 9, when the chiral center is a tetra-substituted carbon atom, the conversion of one enantiomer to the other is equivalent to the exchange of two electron pairs. This transformation is therefore phase inverting. [Pg.346]

The transformation of ethylene to the carbene requires the re-pairing of three electron pairs. It is a phase-preserving reaction, so that the loop is an ip one. The sp -hybridized carbon atom formed upon H transfer is a chiral center consequently, there are two equivalent loops, and thus conical intersections, leading to two enantiomers. [Pg.367]

As discussed in detail in [10], equivalent results are not obtained with these three unitary transformations. A principal difference between the U, V, and B results is the phase of the wave function after being h ansported around a closed loop C, centered on the z axis parallel to but not in the (x, y) plane. The pertm bative wave functions obtained from U(9, <])) or B(0, <()) are, as seen from Eq. (26a) or (26c), single-valued when transported around C that is ( 3 )(r Ro) 3< (r R )) = 1, where Ro = Rn denote the beginning and end of this loop. This is a necessary condition for Berry s geometric phase theorem [22] to hold. On the other hand, the perturbative wave functions obtained from V(0, <])) in Eq. (26b) are not single valued when transported around C. [Pg.463]

Figure 12, Results for the C2H molecule as calculated along a circle surrounding Che 2 A -3 A conical intersection, The conical intersection is located on the C2v line at a distance of 1,813 A from the CC axis, where ri (=CC distance) 1.2515 A. The center of the circle is located at the point of the conical intersection and defined in terms of a radius < . Shown are the non-adiabatic coupling matrix elements tcp((p ) and the adiabatic-to-diabatic transformation angles y((p i ) as calculated for (ii) and (b) where q = 0.2 A (c) and (d) where q = 0.3 A (e) and (/) where q = 0.4 A. Also shown are the positions of the two close-by (3,4) conical intersections (designated as X34). Figure 12, Results for the C2H molecule as calculated along a circle surrounding Che 2 A -3 A conical intersection, The conical intersection is located on the C2v line at a distance of 1,813 A from the CC axis, where ri (=CC distance) 1.2515 A. The center of the circle is located at the point of the conical intersection and defined in terms of a radius < . Shown are the non-adiabatic coupling matrix elements tcp((p ) and the adiabatic-to-diabatic transformation angles y((p i ) as calculated for (ii) and (b) where q = 0.2 A (c) and (d) where q = 0.3 A (e) and (/) where q = 0.4 A. Also shown are the positions of the two close-by (3,4) conical intersections (designated as X34).
The procedure Merge transforms the internal displacement coordinates and momenta, the coordinates and velocities of centers of masses, and directional unit vectors of the molecules back to the Cartesian coordinates and momenta. Evolve with Hr = Hr(q) means only a shift of all momenta for a corresponding impulse of force (SISM requires only one force evaluation per integration step). [Pg.339]

Consideration of the reaction center or reaction site is of central importance in reaction searching. It does not suffice to specify the functional groups in the starting materials and in the products of a reaction when one is interested in a certain transformation. On top of that, one also has to specify that these functional groups shotfid participate directly in the reaction - that they should be part of the reaction center. [Pg.174]

The stereochemistry of reactions can also be treated by permutation group theory for reactions that involve the transformation of an sp carbon atom center into an sp carbon atom center, as in additions to C=C bonds, in elimination reactions, or in eIcctrocycHc reactions such as the one shown in Figure 3-21. Details have been published 3l]. [Pg.199]

Stereochemical strategies The transform selection is guided by stereocenters that have to be removed in retrosynthesis. The user has to select strategic stereo-centers. [Pg.575]

At 31OC, lanthanum changes from a hexagonal to a face-centered cubic structure, and at 865C it again transforms into a body-centered cubic structure. [Pg.128]

The metal has a bright silvery metallic luster. Neodymium is one of the more reactive rare-earth metals and quickly tarnishes in air, forming an oxide that spalls off and exposes metal to oxidation. The metal, therefore, should be kept under light mineral oil or sealed in a plastic material. Neodymium exists in two allotropic forms, with a transformation from a double hexagonal to a body-centered cubic structure taking place at 863oC. [Pg.181]

As with other related rare-earth metals, gadolinium is silvery white, has a metallic luster, and is malleable and ductile. At room temperature, gadolinium crystallizes in the hexagonal, close-packed alpha form. Upon heating to 1235oG, alpha gadolinium transforms into the beta form, which has a body-centered cubic structure. [Pg.187]

Ytterbium has a bright silvery luster, is soft, malleable, and quite ductile. While the element is fairly stable, it should be kept in closed containers to protect it from air and moisture. Ytterbium is readily attacked and dissolved by dilute and concentrated mineral acids and reacts slowly with water. Ytterbium has three allotropic forms with transformation points at -13oC and 795oC. The beta form is a room-temperature, face-centered, cubic modification, while the... [Pg.196]

The 1,6-difunctional hydroxyketone given below contains an octyl chain at the keto group and two chiral centers at C-2 and C-3 (G. Magnusson, 1977). In the first step of the antithesis of this molecule it is best to disconnect the octyl chain and to transform the chiral residue into a cyclic synthon simultaneously. Since we know that ketones can be produced from add derivatives by alkylation (see p. 45ff,), an obvious precursor would be a seven-membered lactone ring, which is opened in synthesis by octyl anion at low temperature. The lactone in turn can be transformed into cis-2,3-dimethyicyclohexanone, which is available by FGI from (2,3-cis)-2,3-dimethylcyclohexanol. The latter can be separated from the commercial ds-trans mixture, e.g. by distillation or chromatography. [Pg.206]

Except for helium, all of the elements in Group 18 free2e into a face-centered cubic (fee) crystal stmeture at normal pressure. Both helium isotopes assume this stmeture only at high pressures. The formation of a high pressure phase of soHd xenon having electrical conductivity comparable to a metal has been reported at 33 GPa (330 kbar) and 32 K, and similar transformations by a band-overlap process have been predicted at 15 GPa (150 kbar) for radon and at 60 GPa (600 kbar) for krypton (51). [Pg.7]

Ca.ta.lysis, Iridium compounds do not have industrial appHcations as catalysts. However, these compounds have been studied to model fundamental catalytic steps (174), such as substrate binding of unsaturated molecules and dioxygen oxidative addition of hydrogen, alkyl haHdes, and the carbon—hydrogen bond reductive elimination and important metal-centered transformations such as carbonylation, -elimination, CO reduction, and... [Pg.181]

Fig. 1. Schematic of the hysteresis loop associated with a shape-memory alloy transformation, where M. and Afp correspond to the martensite start and finish temperatures, respectively, and and correspond to the start and finish of the reverse transformation of martensite, respectively. The physical property can be volume, length, electrical resistance, etc. On cooling the body-centered cubic (bcc) austenite (parent) transforms to an ordered B2 or E)02... Fig. 1. Schematic of the hysteresis loop associated with a shape-memory alloy transformation, where M. and Afp correspond to the martensite start and finish temperatures, respectively, and and correspond to the start and finish of the reverse transformation of martensite, respectively. The physical property can be volume, length, electrical resistance, etc. On cooling the body-centered cubic (bcc) austenite (parent) transforms to an ordered B2 or E)02...
Fig. 2. Distribution of sdicon centers in soluble sdicate solutions from Si Fourier-transform nmr spectroscopy (7,37), where (—) represents (--------),... Fig. 2. Distribution of sdicon centers in soluble sdicate solutions from Si Fourier-transform nmr spectroscopy (7,37), where (—) represents (--------),...

See other pages where Transformation centering is mentioned: [Pg.122]    [Pg.21]    [Pg.122]    [Pg.21]    [Pg.656]    [Pg.561]    [Pg.699]    [Pg.704]    [Pg.768]    [Pg.569]    [Pg.582]    [Pg.1]    [Pg.109]    [Pg.147]    [Pg.101]    [Pg.1068]    [Pg.107]    [Pg.268]    [Pg.439]    [Pg.445]    [Pg.109]    [Pg.316]    [Pg.400]    [Pg.401]    [Pg.55]    [Pg.255]    [Pg.92]    [Pg.16]    [Pg.24]    [Pg.324]    [Pg.461]    [Pg.462]    [Pg.499]    [Pg.385]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



© 2024 chempedia.info