Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface experimental observation

Calculations of the oxygen partial pressure P 0 for the boundary condition both by simply taking the values from the JANAF-tables [12] or by using a modern thermochemical program [13] yield similar results with an equilibrium P Oi) as low as wlO bar at 1000°C. The prediction from the equilibrium would thus be, that at conditions with P 02) > 10 bar we should find the formation of a silica layer on a bare Si surface. Experimental observation shows that this only takes place at F(02)-levels more then 20 orders of magnitude higher. [Pg.145]

The mechanics of the growth of cracks approaching interfaces is a topic of broad interest for layered coatings that are used for thermal, environmental and tribological protection of surfaces. Experimental observations of the... [Pg.336]

Relaxations in the double layers between two interacting particles can retard aggregation rates and cause them to be independent of particle size [101-103]. Discrepancies between theoretical predictions and experimental observations of heterocoagulation between polymer latices, silica particles, and ceria particles [104] have promptetl Mati-jevic and co-workers to propose that the charge on these particles may not be uniformly distributed over the surface [105, 106]. Similar behavior has been seen in the heterocoagulation of cationic and anionic polymer latices [107]. [Pg.192]

Most surfaces are heterogeneous so that in Eq. XI-6 will vary with 6. The experimentally observed adsorption isotherm may then be written... [Pg.393]

The course of a surface reaction can in principle be followed directly with the use of various surface spectroscopic techniques plus equipment allowing the rapid transfer of the surface from reaction to high-vacuum conditions see Campbell [232]. More often, however, the experimental observables are the changes with time of the concentrations of reactants and products in the gas phase. The rate law in terms of surface concentrations might be called the true rate law and the one analogous to that for a homogeneous system. What is observed, however, is an apparent rate law giving the dependence of the rate on the various gas pressures. The true and the apparent rate laws can be related if one assumes that adsorption equilibrium is rapid compared to the surface reaction. [Pg.724]

Triboelectricity. For development to occur, the toner particles must be reproducibly charged to the correct level and polarity for the specific photoreceptor. The phenomena of triboelectricity, which involves the transfer of charge from one soHd to another, are exceedingly complex, involving the surfaces of soHds and interaction of the surfaces with each other and with the ambient (52). Consequentiy, the specific experimental observations are highly sensitive to the nature and purity of the materials, the physical and chemical state of both surfaces, and the precise details of the experiments performed. [Pg.136]

Fig. 1. Schematic diagram illustrating the mechanical instability for (a) a weak spring (spring constant k) a distance D from the surface, experiencing an arbitrary surface force (after [19]) and (b) the experimentally observed force-distance curve relative to the AFM sample position (piezo displacement) for the same interaction. Fig. 1. Schematic diagram illustrating the mechanical instability for (a) a weak spring (spring constant k) a distance D from the surface, experiencing an arbitrary surface force (after [19]) and (b) the experimentally observed force-distance curve relative to the AFM sample position (piezo displacement) for the same interaction.
The progressive ordering from the surface to the center has been experimentally observed in the case of the electron irradiation-induced formation of the quasi-spherical onion-like particles[25]. In this case, the large inner hollow space is unstable under electron bombardment, and a compact particle (innermost shell C( ) is the final result of the graphitization of the carbon volume (see Fig. 3e-h). [Pg.165]

Phase transitions in two-dimensional layers often have very interesting and surprising features. The phase diagram of the multicomponent Widom-Rowhnson model with purely repulsive interactions contains a nontrivial phase where only one of the sublattices is preferentially occupied. Fluids and molecules adsorbed on substrate surfaces often have phase transitions at low temperatures where quantum effects have to be considered. Examples are molecular layers of H2, D2, N2 and CO molecules on graphite substrates. We review the path integral Monte Carlo (PIMC) approach to such phenomena, clarify certain experimentally observed anomalies in H2 and D2 layers, and give predictions for the order of the N2 herringbone transition. Dynamical quantum phenomena in fluids are analyzed via PIMC as well. Comparisons with the results of approximate analytical theories demonstrate the importance of the PIMC approach to phase transitions where quantum effects play a role. [Pg.78]

Experimental observations (S3) indicate that a stagnant cap is formed over the rear of the droplet as surface-active agents are added, and that this cap tends to enlarge with increasing concentrations until the entire droplet is enveloped. Thus, circulation may occur only in the front portion of the bubble. In contrast to this mechanism, Thorsen and Terjesen (T3) and Gamer (Gil) concluded that most of the mass transfer takes place at the rear of the bubble. [Pg.328]

In situ Fourier transform infrared and in situ infrared reflection spectroscopies have been used to study the electrical double layer structure and adsorption of various species at low-index single-crystal faces of Au, Pt, and other electrodes.206"210 It has been shown that if the ions in the solution have vibrational bands, it is possible to relate their excess density to the experimentally observed surface. [Pg.41]

Figure 42. Scheme comparing expected potential-independent charge-transfer rates from Marcus-Gerischer theory of interfacia) electron transfer (left) with possible mechanisms for explaining the experimental observation of potential-dependent electron-transfer rates (right) a potential-dependent concentration of surface states, or a charge-transfer rate that depends on the thermodynamic force (electric potential difference) in the interface. [Pg.513]

One of the most important, but not too surprising experimental observations after the discovery of electrochemical promotion is that the work function, O, of the gas exposed catalyst-electrode surfaces changes significantly (up to 2 eV) during galvanostatic transients such as the ones shown in Figures 4.13, 4.14, 4.15 and 4.17 as well as at steady-state and in fact that, over wide experimental conditions, it is (Fig. 4.21)54 ... [Pg.139]


See other pages where Surface experimental observation is mentioned: [Pg.655]    [Pg.871]    [Pg.871]    [Pg.878]    [Pg.902]    [Pg.908]    [Pg.929]    [Pg.952]    [Pg.513]    [Pg.164]    [Pg.87]    [Pg.293]    [Pg.1]    [Pg.14]    [Pg.92]    [Pg.59]    [Pg.77]    [Pg.259]    [Pg.261]    [Pg.412]    [Pg.874]    [Pg.1267]    [Pg.36]    [Pg.89]    [Pg.141]    [Pg.816]    [Pg.39]    [Pg.21]    [Pg.599]    [Pg.12]    [Pg.253]    [Pg.317]    [Pg.237]    [Pg.384]    [Pg.134]    [Pg.152]    [Pg.180]   
See also in sourсe #XX -- [ Pg.21 , Pg.216 , Pg.217 , Pg.218 , Pg.219 , Pg.220 , Pg.221 , Pg.222 , Pg.223 , Pg.224 , Pg.225 , Pg.226 , Pg.227 , Pg.228 , Pg.229 ]




SEARCH



Surface experimental

Surfaces observed

© 2024 chempedia.info