Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transfer by Monomer

Chain Transfer by Monomer 0-Hydrogen elimination takes place simultaneously with monomer insertion at the active center without forming the M-H bond  [Pg.586]


The first term in the denominator denotes termination by a combination of coupling and disproportionation, and the other terms denote chain transfer by monomer, chain-transfer agent, and initiator, respectively. [Pg.239]

This reaction may account in part for the oligomers obtained in the polymerization of pro-pene, 1-butene, and other 1-alkenes where the propagation reaction is not highly favorable (due to the low stability of the propagating carbocation). Unreactive 1-alkenes and 2-alkenes have been used to control polymer molecular weight in cationic polymerization of reactive monomers, presumably by hydride transfer to the unreactive monomer. The importance of hydride ion transfer from monomer is not established for the more reactive monomers. For example, hydride transfer by monomer is less likely a mode of chain termination compared to proton transfer to monomer for isobutylene polymerization since the tertiary carbocation formed by proton transfer is more stable than the allyl carbocation formed by hydride transfer. Similar considerations apply to the polymerizations of other reactive monomers. Hydride transfer is not a possibility for those monomers without easily transferable hydrogens, such as A-vinylcarbazole, styrene, vinyl ethers, and coumarone. [Pg.385]

End Groups and Branching. Both saturated and unsaturated end groups can be formed during polymerization by chain transfer to monomer or polymer and by disproportionation. Some of the possible chain end groups are... [Pg.500]

Glass-Transition Temperature. The T of PVP is sensitive to residual moisture (75) and unreacted monomer. It is even sensitive to how the polymer was prepared, suggesting that MWD, branching, and cross-linking may play a part (76). Polymers presumably with the same molecular weight prepared by bulk polymerization exhibit lower T s compared to samples prepared by aqueous solution polymerization, lending credence to an example, in this case, of branching caused by chain-transfer to monomer. [Pg.528]

The reaction is repeated over and over again with the rapid growth of a long chain ion. Termination can occur by rearrangement of the ion pair (Figure 2.24) or by monomer transfer. [Pg.35]

Suspension polymerisation of styrene is widely practised commercially. In this process the monomer is suspended in droplets 5 -Min. in diameter in a fluid, usually water. The heat transfer distances for the dissipation of the exotherm are thus reduced to values in the range s-fisin. Removal of heat from the low-viscosity fluid medium presents little problem. The reaction is initiated by monomer-soluble initiators such as benzoyl peroxide. [Pg.431]

It has generally been concluded that the photoinitiation of polymerization by the transition metal carbonyls/ halide system may occur by three routes (1) electron transfer to an organic halide with rupture of C—Cl bond, (2) electron transfer to a strong-attracting monomer such as C2F4, probably with scission of-bond, and (3) halogen atom transfer from monomer molecule or solvent to a photoexcited metal carbonyl species. Of these, (1) is the most frequently encountered. [Pg.247]

Polymerization of some vinyl monomers initiated by those colored aromatic complexes was described by Scott38 over twenty years ago, and recently the mechanism of this reaction has been elucidated in our laboratory43 where we demonstrated that polymerization initiation is due to an electron transfer to monomer, namely A - -M A-f-M . This system is useful, therefore, in... [Pg.154]

Many emulsion polymerizations can be described by so-called zero-one kinetics. These systems are characterized by particle sizes that are sufficiently small dial entry of a radical into a particle already containing a propagating radical always causes instantaneous termination. Thus, a particle may contain either zero or one propagating radical. The value of n will usually be less than 0.4. In these systems, radical-radical termination is by definition not rate determining. Rates of polymerization are determined by the rates or particle entry and exit rather than by rates of initiation and termination. The main mechanism for exit is thought to be chain transfer to monomer. It follows that radical-radical termination, when it occurs in the particle phase, will usually be between a short species (one that lias just entered) and a long species. [Pg.250]

Early reports37 157 167 suggested that termination during VAc polymerization involved predominantly disproportionation. However, these investigations did not adequately allow for the occurrence of transfer to monomer and/or polymer, which are extremely important during VAc polymerization (Sections 6.2.6.2 and 6.2.7.4 respectively). These problems were addressed by Bamford et who used the gelation technique (Section 5.2.2,2) to show that the predominant radical-radical termination mechanism is combination (25 °C). [Pg.263]

Studies on VC polymerization are also complicated by the fact that only a small proportion of termination events may involve radical-radical reactions. Most termination is by transfer to monomer (Sections 4.3.1.2 and 6.2.63). Early studies on the termination mechanism which do not allow for this probably overestimate the importance of disproportionation.lb8 iw... [Pg.263]

In the case of S, it has been proposed that reinitiation may occur by hydrogen-atom transfer to monomer (Scheme 6.13).I2,6S... [Pg.295]

Irrespective of the mechanism by which transfer to monomer occurs, the process will usually produce an unsaturated radical as a byproduct. This species initiates polymerization to afford a macromonomcr that may be reactive under typical polymerization conditions. [Pg.317]

It has been proposed that transfer to monomer may not involve the monomer directly but rather the intermediate (110) formed by Diels-Alder dimerization (Scheme 6.28). 70 Since 110 is formed during the course of polymerization, its involvement could be confirmed by analysis of the polymerization kinetics. [Pg.317]

Stames el al.I7 have provided support for the above mechanism (Scheme 6.29) by determining the unsaturated chain ends (112) in low conversion PVAc by l3C NMR. They were able to distinguish (112) from chain ends that might have been formed if transfer involved abstraction of a vinylic hydrogen. The number of unsaturated chain ends (112) was found to equate with the number of -CH OAc ends suggesting that most chains arc formed by transfer to monomer. Stames et a . 13 also found an isotope effect k kD of 2.0 for the abstraction reaction with CTTpCHOiCCD as monomer. This result is consistent with the mechanism shown in Scheme 6.28 but is contrary to an earlier finding.174... [Pg.318]

Transfer to monomer is of particular importance during the polymerization of allyl esters (113, X=()2CR), ethers (113, X=OR), amines (113, X=NR2) and related monomcrs.iw, 8, lb2 The allylic hydrogens of these monomers arc activated towards abstraction by both the double bond and the heteroatom substituent (Scheme 6.31). These groups lend stability to the radical formed (114) and are responsible for this radical adding monomer only slowly. This, in turn, increases the likelihood of side reactions (i.e. degradative chain transfer) and causes the allyl monomers to retard polymerization. [Pg.319]

PVAc is known to contain a significant number of long chain branches. Branches to the acetate methyl may arise by copolymerization of the VAe macromonomcr produced as a consequence of transfer to monomer (Section 6.2.6.2). Transfer to polymer may involve either the acetate methyl hydrogens (Scheme 6.34) or the methine (Scheme 6.35) or methylene hydrogens of the polymer backbone. [Pg.323]

PVC formed with diacyl peroxide or peroxydicarbonate initiators will contain a proportion of potentially labile a-haloester chain ends (6, Scheme 8.9). However, it is believed that most chain ends in PVC are formed by transfer to monomer as is discussed in Sections 4.3.1.2 and 6.2.6.3.47... [Pg.421]

The key requirements for using Si-Cl functional initiators to produce polymers carrying Si Cl termini by carbenium ion polymerization are i) Si-Cl should be inert toward aUcylaluminum coinitiators, ii) Si-Cl should not react with propagating carbenium ions, in) chain transfer to monomer should be negligible so as to end up with one Si-Cl head-group per polymer chain. [Pg.17]

Effects of solvent polarity, counter-anion nucleophilidty, temperature, and monomer concentration on the carbenium ion polymerization chemistry have been extensively studied29,36 38,49. Based on previous knowledge26"29 Me3Al was chosen because with this coinitiator undesired chain transfer to monomer processes are absent. Preliminary experiments showed that Et3Al coinitiator did not yield PaMeSt, possibly because the nuc-leophilicity of the counter-anion Et3AlQe is too high and thus termination by hydrida-tion is faster than propagation36. ... [Pg.31]

Assuming that the number average degree of polymerization (DP ) is determined by chain transfer to monomer and assuming unimolecular termination relative to propagation (i.e., chain breaking due to solvent, polymer, impurities are absent), the simple Mayo equation55 ... [Pg.35]

Thus with aMeSt, the kinetic chain is relatively short, monomer is consumed mainly by initiation and propagation, and chain transfer by the HSiCCHj CH H C Q initiator is unfavorable (see Sect. III.B.3.b.i.). In contrast, with isobutylene the kinetic chain may live longer because it is sustained by thermodynamically favorable chain transfer by the initiator. Scheme 5 illustrates the mechanism of isobutylene polymerization by the HSi(CH3)2CH2CH29>CH2Cl/Me3Al system. The kinetic chain is sustained by chain transfer loops shown on the left margin of the Scheme. [Pg.41]


See other pages where Transfer by Monomer is mentioned: [Pg.275]    [Pg.275]    [Pg.414]    [Pg.316]    [Pg.277]    [Pg.245]    [Pg.374]    [Pg.466]    [Pg.524]    [Pg.315]    [Pg.324]    [Pg.490]    [Pg.3]    [Pg.217]    [Pg.296]    [Pg.316]    [Pg.318]    [Pg.375]    [Pg.531]    [Pg.531]    [Pg.594]    [Pg.35]    [Pg.36]   


SEARCH



Monomers transfer

© 2024 chempedia.info