Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trajectory theories

Sawada S and Metiu H 1986 A multiple trajectory theory for curve crossing problems obtained by using a Gaussian wave packet representation of the nuclear motion J. Chem. Phys. 84 227-38... [Pg.1087]

Assuming that the current programs in electric propulsion are successful, and that the required efficiencies and specific weights are attained, what are the advantages of this propulsion system over others such as chemical or nuclear rockets Using the trajectory theories [2, 3,16], the initial weights and payloads for a number of missions have been estimated and compared with those needed with other propulsion systems. [Pg.16]

Kaganovich, B.M., Keiko, A.V., Shamansky, V.A., Zarodnyuk, M.S. (2010). Analysis of Mathematical Communications between Equilibrium Thermodynamics and Trajectory Theories, MESI SB RAS, ISBN 978-5-93908-078-3, Irkutsk (in Russian). [Pg.59]

DEDUCTION OF SCHRODINCER S EQUATION FROM THE LAGRANGIAN-PICTURE TRAJECTORY THEORY... [Pg.57]

Shalashilin DV (2009) Quantum mechanics with the basis set guided by Ehrenfest trajectories theory and application to spin-boson model. J Chem Phys 130 244101... [Pg.209]

The experimental rate coelHcient for the reaction of H3O+ with acetone has been determined to be (3.9 1.0) x 10 cm s at 300 K. Clearly the Langevin rate coefficient lies significantly below the experimental rate coefficient, which is expected given the neglect of the ion-permanent dipole interaction. Both the ADO and the trajectory theories do significantly better, with the latter in particular yielding excellent agreement with experiment. [Pg.38]

At the time the experiments were perfomied (1984), this discrepancy between theory and experiment was attributed to quantum mechanical resonances drat led to enhanced reaction probability in the FlF(u = 3) chaimel for high impact parameter collisions. Flowever, since 1984, several new potential energy surfaces using a combination of ab initio calculations and empirical corrections were developed in which the bend potential near the barrier was found to be very flat or even non-collinear [49, M], in contrast to the Muckennan V surface. In 1988, Sato [ ] showed that classical trajectory calculations on a surface with a bent transition-state geometry produced angular distributions in which the FIF(u = 3) product was peaked at 0 = 0°, while the FIF(u = 2) product was predominantly scattered into the backward hemisphere (0 > 90°), thereby qualitatively reproducing the most important features in figure A3.7.5. [Pg.878]

Montgomery J A Jr, Chandler D and Berne B J 1979 Trajectory analysis of a kinetic theory for isomerization dynamics in condensed phases J. Chem. Phys. 70 4056... [Pg.896]

The obvious defect of classical trajectories is that they do not describe quantum effects. The best known of these effects is tunnelling tln-ough barriers, but there are others, such as effects due to quantization of the reagents and products and there are a variety of interference effects as well. To circumvent this deficiency, one can sometimes use semiclassical approximations such as WKB theory. WKB theory is specifically for motion of a particle in one dimension, but the generalizations of this theory to motion in tliree dimensions are known and will be mentioned at the end of this section. More complete descriptions of WKB theory can be found in many standard texts [1, 2, 3, 4 and 5, 18]. [Pg.999]

In deriving the RRKM rate constant in section A3.12.3.1. it is assumed that the rate at which reactant molecules cross the transition state, in the direction of products, is the same rate at which the reactants fonn products. Thus, if any of the trajectories which cross the transition state in the product direction return to the reactant phase space, i.e. recross the transition state, the actual unimolecular rate constant will be smaller than that predicted by RRKM theory. This one-way crossing of the transition state, witii no recrossmg, is a fiindamental assumption of transition state theory [21]. Because it is incorporated in RRKM theory, this theory is also known as microcanonical transition state theory. [Pg.1015]

The first classical trajectory study of iinimoleciilar decomposition and intramolecular motion for realistic anhannonic molecular Hamiltonians was perfonned by Bunker [12,13], Both intrinsic RRKM and non-RRKM dynamics was observed in these studies. Since this pioneering work, there have been numerous additional studies [9,k7,30,M,M, ai d from which two distinct types of intramolecular motion, chaotic and quasiperiodic [14], have been identified. Both are depicted in figure A3,12,7. Chaotic vibrational motion is not regular as predicted by tire nonnal-mode model and, instead, there is energy transfer between the modes. If all the modes of the molecule participate in the chaotic motion and energy flow is sufficiently rapid, an initial microcanonical ensemble is maintained as the molecule dissociates and RRKM behaviour is observed [9], For non-random excitation initial apparent non-RRKM behaviour is observed, but at longer times a microcanonical ensemble of states is fonned and the probability of decomposition becomes that of RRKM theory. [Pg.1026]

For some systems qiiasiperiodic (or nearly qiiasiperiodic) motion exists above the unimoleciilar tlireshold, and intrinsic non-RRKM lifetime distributions result. This type of behaviour has been found for Hamiltonians with low uninioleciilar tliresholds, widely separated frequencies and/or disparate masses [12,, ]. Thus, classical trajectory simulations perfomied for realistic Hamiltonians predict that, for some molecules, the uninioleciilar rate constant may be strongly sensitive to the modes excited in the molecule, in agreement with the Slater theory. This property is called mode specificity and is discussed in the next section. [Pg.1027]

Shalashilin D V and Thompson D L 1996 Intrinsic non-RRK behavior classical trajectory, statistical theory, and diffusional theory studies of a unimolecular reaction J. Chem. Phys. 105 1833—45... [Pg.1044]

For larger systems, various approximate schemes have been developed, called mixed methods as they treat parts of the system using different levels of theory. Of interest to us here are quantuin-seiniclassical methods, which use full quantum mechanics to treat the electrons, but use approximations based on trajectories in a classical phase space to describe the nuclear motion. The prefix quantum may be dropped, and we will talk of seiniclassical methods. There are a number of different approaches, but here we shall concentrate on the few that are suitable for direct dynamics molecular simulations. An overview of other methods is given in the introduction of [21]. [Pg.252]

One way to overcome this problem is to start by setting up the ensemble of trajectories (or wavepacket) at the transition state. If these bajectories are then run back in time into the reactants region, they can be used to set up the distribution of initial conditions that reach the barrier. These can then be run forward to completion, that is, into the products, and by using transition state theory a reaction rate obtained [145]. These ideas have also been recently extended to non-adiabatic systems [146]. [Pg.272]

Caustics The above formulae can only be valid as long as Eq. (9) describes a unique map in position space. Indeed, the underlying Hamilton-Jacobi theory is only valid for the time interval [0,T] if at all instances t [0, T] the map (QOi4o) —> Q t, qo,qo) is one-to-one, [6, 19, 1], i.e., as long as trajectories with different initial data do not cross each other in position space (cf. Fig. 1). Consequently, the detection of any caustics in a numerical simulation is only possible if we propagate a trajectory bundle with different initial values. Thus, in pure QCMD, Eq. (11), caustics cannot be detected. [Pg.384]

Both molecular dynamics studies and femtosecond laser spectroscopy results show that molecules with a sufficient amount of energy to react often vibrate until the nuclei follow a path that leads to the reaction coordinate. Dynamical calculations, called trajectory calculations, are an application of the molecular dynamics method that can be performed at semiempirical or ah initio levels of theory. See Chapter 19 for further details. [Pg.162]

Several VTST techniques exist. Canonical variational theory (CVT), improved canonical variational theory (ICVT), and microcanonical variational theory (pVT) are the most frequently used. The microcanonical theory tends to be the most accurate, and canonical theory the least accurate. All these techniques tend to lose accuracy at higher temperatures. At higher temperatures, excited states, which are more difficult to compute accurately, play an increasingly important role, as do trajectories far from the transition structure. For very small molecules, errors at room temperature are often less than 10%. At high temperatures, computed reaction rates could be in error by an order of magnitude. [Pg.167]

Rather than using transition state theory or trajectory calculations, it is possible to use a statistical description of reactions to compute the rate constant. There are a number of techniques that can be considered variants of the statistical adiabatic channel model (SACM). This is, in essence, the examination of many possible reaction paths, none of which would necessarily be seen in a trajectory calculation. By examining paths that are easier to determine than the trajectory path and giving them statistical weights, the whole potential energy surface is accounted for and the rate constant can be computed. [Pg.168]

This technique has not been used as widely as transition state theory or trajectory calculations. The accuracy of results is generally similar to that given by pTST. There are a few cases where SACM may be better, such as for the reactions of some polyatomic polar molecules. [Pg.168]

The transition state theory rate constant can be constructed as follows. The total flux of trajectories across the transition state dividing surface will be equal to the rate of transition times the population of reactants at equilibrium N, or... [Pg.202]

Figure 2 A typical trajectory satisfying the assumptions of transition state theory. The reactive trajectory crosses the transition state surface once and only once on its way from activated reactant to deactivated product. Figure 2 A typical trajectory satisfying the assumptions of transition state theory. The reactive trajectory crosses the transition state surface once and only once on its way from activated reactant to deactivated product.
In accordance with the one-dimensional periodic orbit theory, any orbit contributing to g E) is supposedly constructed from closed classical orbits in the well and subbarrier imaginary-time trajectories. These two classes of trajectories are bordering on the turning points. For the present model the classical motion in the well is separable, and the harmonic approximation for classical motion is quite reasonable for more realistic potentials, if only relatively low energy levels are involved. [Pg.72]


See other pages where Trajectory theories is mentioned: [Pg.10]    [Pg.49]    [Pg.49]    [Pg.55]    [Pg.20]    [Pg.10]    [Pg.49]    [Pg.49]    [Pg.55]    [Pg.20]    [Pg.62]    [Pg.848]    [Pg.1025]    [Pg.1800]    [Pg.2051]    [Pg.234]    [Pg.92]    [Pg.230]    [Pg.371]    [Pg.165]    [Pg.248]    [Pg.297]    [Pg.202]    [Pg.3]    [Pg.6]    [Pg.67]    [Pg.73]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Activated complex theory trajectory calculations

© 2024 chempedia.info