Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tower pressure controls partial condensation

The bypassed vapor heats up the liquid there, thereby causing the pressure to rise. WTien the bypass is closed, the pressure falls. Sufficient heat transfer surface is provided to subcool the condensate, (f) Vapor bypass between the condenser and the accumulator, with the condenser near ground level for the ease of maintenance When the pressure in the tower falls, the bypass valve opens, and the subcooled liquid in the drum heats up and is forced by its vapor pressure back into the condenser. Because of the smaller surface now exposed to the vapor, the rate of condensation is decreased and consequently the tower pressure increases to the preset value. With normal subcooling, obtained with some excess surface, a difference of 10-15 ft in levels of drum and condenser is sufficient for good control, (g) Cascade control The same system as case (a), but with addition of a TC (or composition controller) that resets the reflux flow rate, (h) Reflux rate on a differential temperature controller. Ensures constant internal reflux rate even when the performance of the condenser fluctuates, (i) Reflux is provided by a separate partial condenser on TC. It may be mounted on top of the column as shown or inside the column or installed with its own accumulator and reflux pump in the usual way. The overhead product is handled by an alter condenser which can be operated with refrigerant if required to handle low boiling components. [Pg.51]

Pressurized Water Reactor. The PWR contains three coolant systems (1) the primary system, which removes heat from the reactor and partially controls nuclear criticality (2) the secondary system, which transfers the heat from the primary system via the steam generator to the turbine-driven electric generator (3) the service water system (the heat sink), which dumps the residual coolant energy from the turbine condenser to the environment. The service water is recirculated from a river, lake, ocean, or cooling tower. In the primary system (Fig. 31.21), dissolved boron is present to control nuclear criticality. Fixed-bed ion exchange units are used to maintain the water quality in both the primary and the secondary systems. In addition, the chemical and volume control system reduces boron concentration during the power cycle to compensate for fuel burnup. These operations are carried out continuously though bypass systems. A more complete... [Pg.1266]


See other pages where Tower pressure controls partial condensation is mentioned: [Pg.51]    [Pg.51]    [Pg.51]    [Pg.66]    [Pg.220]    [Pg.105]    [Pg.187]    [Pg.138]    [Pg.165]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Condensate control

Condensers control

Condensing pressure

Condensing pressure control

Partial condensation pressure control

Partial condensing

Partial pressure

Partial pressure control

Pressure condensation

Pressure condenser

Pressure control

Pressure control towers

Tower condensation

Tower pressure

© 2024 chempedia.info