Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic substitution tosylates

Azides from tosylates Nucleophilic substitution with retention of configuration... [Pg.101]

An advantage that sulfonate esters have over alkyl halides is that their prepara tion from alcohols does not involve any of the bonds to carbon The alcohol oxygen becomes the oxygen that connects the alkyl group to the sulfonyl group Thus the configuration of a sulfonate ester is exactly the same as that of the alcohol from which It was prepared If we wish to study the stereochemistry of nucleophilic substitution m an optically active substrate for example we know that a tosylate ester will have the same configuration and the same optical purity as the alcohol from which it was prepared... [Pg.353]

Section 8 14 Nucleophilic substitution can occur with leaving groups other than halide Alkyl p toluenesulfonates (tosylates) which are prepared from alcohols by reaction with p toulenesulfonyl chloride are often used... [Pg.357]

The apphcation of bimolecular, nucleophilic substitution (S ) reactions to sucrose sulfonates has led to a number of deoxhalogeno derivatives. Selective displacement reactions of tosyl (79,85), mesyl (86), and tripsyl (84,87) derivatives of sucrose with different nucleophiles have been reported. The order of reactivity of the sulfonate groups in sucrose toward reaction has been found to be 6 > 6 > 4 > 1. ... [Pg.34]

Trifluoromethanesulfonate (triflate) ion is an exceptionally good leaving grov. It can be used for nucleophilic substitution reactions on unreactive substrates. Acetolysis of cyclopropyl triflate, for example, occurs 10 times faster than acetolysis of cyclopropyl tosylate. Table 5.11 gives a conqiarison of the triftate group with some other common leaving groups. [Pg.296]

Nucleophilic displacement reactions One of the most common reactions in organic synthesis is the nucleophilic displacement reaction. The first attempt at a nucleophilic substitution reaction in a molten salt was carried out by Ford and co-workers [47, 48, 49]. FFere, the rates of reaction between halide ion (in the form of its tri-ethylammonium salt) and methyl tosylate in the molten salt triethylhexylammoni-um triethylhexylborate were studied (Scheme 5.1-20) and compared with similar reactions in dimethylformamide (DMF) and methanol. The reaction rates in the molten salt appeared to be intermediate in rate between methanol and DMF (a dipolar aprotic solvent loiown to accelerate Sn2 substitution reactions). [Pg.184]

Although this particular series of reactions involves nucleophilic substitution of an alkyl p-toluenesulfonate (called a tosylate) rather than an alkyl halide, exactly the same type of reaction is involved as that studied by Walden. For all practical purposes, the entire tosylate group acts as if it were simply a halogen substituent. In fact, when you see a tosylate substituent in a molecule, do a mental substitution and tell yourself that you re dealing with an alkyl halide. [Pg.360]

From this and nearly a dozen other series of similar reactions, workers concluded that the nucleophilic substitution reaction of a primary or secondary alkyl halide or tosylate always proceeds with inversion of configuration. (Tertiary alkyl halides and tosylates, as we ll see shortly, give different stereochemical results and react by a different mechanism.)... [Pg.362]

Alternatively, an alcohol can be made more reactive toward nucleophilic substitution by treating it with p ra-toluenesulfonyl chloride to form a tosylate. As noted on several previous occasions, tosylates are even more reactive than halides in nucleophilic substitutions. Note that tosylate formation does not change the configuration of the oxygen-bearing carbon because the C-0 bond is not broken. [Pg.369]

Tosylate (Section 11.1) A p-toluenesulfonate ester useful as a leaving group in nucleophilic substitution reactions. [Pg.1252]

Although halides are common leaving groups in nucleophilic substitution for synthetic purposes, it is often more convenient to use alcohols. Since OH does not leave from ordinary alcohols, it must be converted to a group that does leave. One way is protonation, mentioned above. Another is conversion to a reactive ester, most commonly a sulfonic ester. The sulfonic ester groups tosylate, brosylate, nosylate, and mesylate are better leaving groups than... [Pg.446]

The objective in selecting the reaction conditions for a preparative nucleophilic substitution is to enhance the mutual reactivity of the leaving group and nucleophile so that the desired substitution occurs at a convenient rate and with minimal competition from other possible reactions. The generalized order of leaving-group reactivity RSOj" I- > BF > CF pertains for most Sw2 processes. (See Section 4.2.3 of Part A for more complete data.) Mesylates, tosylates, iodides, and bromides are all widely used in synthesis. Chlorides usually react rather slowly, except in especially reactive systems, such as allyl and benzyl. [Pg.224]

The domino reaction is initiated by the chemoselective attack of the carbanion 2-458 on the terminal ring carbon atom of epoxyhomoallyl tosylate 2-459 to give the alkoxides 2-460 after a 1,4-carbon-oxygen shift of the silyl group. The final step to give the cyclopentane derivates 2-461 is a nucleophilic substitution. In some cases, using the TBS group and primary tosylates, oxetanes are formed as byproducts. [Pg.120]

Ethenylcyclopropyl tosylates 131 and 2-cyclopropylideneethyl acetates 133, readily available from the cyclopropanone hemiacetals 130, undergo the re-gioselective Pd(0)-catalyzed nucleophilic substitution via the unsymmetrical 1,1-dimethylene-jr-allyl complexes. For example, reduction with sodium formate affords a useful route from 131 to the strained methylenecyclopropane derivatives 132. The regioselective attack of the hydride is caused by the sterically... [Pg.127]

The incorporation of a fluorine-18 label can also be achieved by standard aliphatic nucleophilic substitution chemistry, as exemplified in Scheme 6.171. Here, the widely used reagent [18F]-/f-fluoroethyl tosylate was utilized to prepare several important 18F-labeled compounds [323],... [Pg.217]

Thus, tosyl chloride may be used to facilitate nucleophilic substitutions. [Pg.273]

An example of a direct (one-step) preparation involving aliphatic nucleophilic substitution with [ F]fluoiide is the synthesis of [ F]fallypride (Scheme 34), a high-affinity dopaminergic D2 receptor ligand, from the corresponding tosylate in about 20% radiochemical yield [145],... [Pg.32]

Furthermore, Marshall et al. developed the extractable MBF tracer 7 -[ F] fluoro-6, 7 -dihydrorotenone (p F]FDHR) [72]. p F]FDHR is a derivative of the neutral and lipophilic lead compound rotenone that binds to the complex I of the mitochondrial electron transport chain [73-76]. It was prepared from 7 -tosyl-oxy-6, 7 -dihydroroten-12-ol (DHR-ol-OTos) in two steps. After nucleophilic substitution of DHR-ol-OTos with p F]fluoride, the intermediate was oxidized with manganese dioxide to yield the target compound [ F]FDHR (Fig. 11). [Pg.98]


See other pages where Nucleophilic substitution tosylates is mentioned: [Pg.361]    [Pg.161]    [Pg.447]    [Pg.526]    [Pg.221]    [Pg.234]    [Pg.1212]    [Pg.27]    [Pg.270]    [Pg.42]    [Pg.499]    [Pg.359]    [Pg.295]    [Pg.142]    [Pg.274]    [Pg.190]    [Pg.147]    [Pg.883]    [Pg.191]    [Pg.93]    [Pg.257]    [Pg.43]    [Pg.13]    [Pg.172]    [Pg.54]    [Pg.240]   
See also in sourсe #XX -- [ Pg.4 , Pg.475 ]




SEARCH



Cyclohexyl tosylate, nucleophilic substitution

© 2024 chempedia.info