Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tosylates, also esters

Carbamate esters also react with BCI3 in the presence of EtjN to afford isocyanates under mild reaction conditions (Schane 23.13)." In most cases, quantitative or near-quantitative conversion to isocyanates is achieved in aryl, alkyl, alicyclic, and tosyl carbamate esters. [Pg.584]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

The most frequentiy used halo alkylating agents are aldehydes and hydrogen haUdes, haloalkyl ethers, haloalkyl sulfides, acetals and hydrogen haUdes, di- and polyhaloalkanes, haloalkenes, haloalcohols, haloalkyl sulfates, haloalkyl -tosylates, and miscellaneous further haloalkyl esters. Haloalkylations include halomethylation, haloethylation, and miscellaneous higher haloalkylations. Under specific conditions, bis- and polyhaloalkylation can also be achieved. [Pg.554]

Other examples of the successful displacement of tosylates are the preparation of 31 -, 16a-,16j - and27- labeled steroids. This displacement reaction fails, however, with certain C-18 and C-19 alcohol derivatives which give mainly O—S instead of C—O bond cleavage. Unsatisfactory results were also obtained with sterically hindered tosylate esters at C-11, C-12 and C-20, which give considerable amounts of olefinic products in addition to O—S bond cleavage. ... [Pg.197]

In 1972, van Leusen, Hoogenboom and Siderius introduced the utility of TosMIC for the synthesis of azoles (pyrroles, oxazoles, imidazoles, thiazoles, etc.) by delivering a C-N-C fragment to polarized double bonds. In addition to the synthesis of 5-phenyloxazole, they also described reaction of TosMIC with /7-nitro- and /7-chloro-benzaldehyde (3) to provide analogous oxazoles 4 in 91% and 57% yield, respectively. Reaction of TosMIC with acid chlorides, anhydrides, or esters leads to oxazoles in which the tosyl group is retained. For example, reaction of acetic anhydride and TosMIC furnish oxazole 5 in 73% yield. ... [Pg.254]

The earliest method developed for the preparation of nonracemic aziridine-2-car-boxylates was the cyclization of naturally occurring (3-hydroxy-a-amino acid derivatives (serine or threonine) [4]. The (3-hydroxy group is normally activated as a tosyl or mesyl group, which is ideal for an intramolecular SN2 displacement. The cyclization has been developed in both one-pot and stepwise fashion [4—9]. As an example, serine ester 3 (Scheme 3.2) was treated with tosyl chloride in the presence of triethylamine to afford aziridine-2-carboxylate 4 in 71% yield [9]. Cyclization of a-hydroxy- 3-amino esters to aziridine-2-carboxylates under similar conditions has also been described [10]. [Pg.74]

Aziridine-2-carboxylates 12 (Scheme 3.4) have also been prepared from 3-hy-droxy-a-amino esters 9 by treatment with sulfuryl chloride in place of tosyl or mesyl chloride. Treatment of 9 with thionyl chloride in the presence of triethylamine, followed by oxidation of 10 with sodium periodate and a catalytic amount of... [Pg.74]

Sulfonic esters are most frequently prepared by treatment of the corresponding halides with alcohols in the presence of a base. The method is much used for the conversion of alcohols to tosylates, brosylates, and similar sulfonic esters. Both R and R may be alkyl or aryl. The base is often pyridine, which functions as a nucleophilic catalyst, as in the similar alcoholysis of carboxylic acyl halides (10-21). Primary alcohols react the most rapidly, and it is often possible to sulfonate selectively a primary OH group in a molecule that also contains secondary or tertiary OH groups. The reaction with sulfonamides has been much less frequently used and is limited to N,N-disubstituted sulfonamides that is, R" may not be hydrogen. However, within these limits it is a useful reaction. The nucleophile in this case is actually R 0 . However, R" may be hydrogen (as well as alkyl) if the nucleophile is a phenol, so that the product is RS020Ar. Acidic catalysts are used in this case. Sulfonic acids have been converted directly to sulfonates by treatment with triethyl or trimethyl orthoformate HC(OR)3, without catalyst or solvent and with a trialkyl phosphite P(OR)3. ... [Pg.576]

Sulfonate esters also can be prepared under Mitsunobu conditions. Use of zinc tosylate in place of the carboxylic acid gives a tosylate of inverted configuration. [Pg.228]

Tosylate is displaced by weak oxyanions with little elimination in aprotic solvents, providing alternative routes to polymer-bound esters and aryl ethers. Alkoxides, unfortunately, give significant functional yields of (vinyl)polystyrene under the same conditions. Phosphines and sulfides can also be prepared from the appropriate anions (57), the latter lipophilic enough for phase-transfer catalysis free from poisonning by released tosylate. [Pg.28]

Tri-O-acetyl-a-D-xylopyranosyl bromide106 (138) and N-tosyl-L-serine methyl ester107 (139) were condensed in the presence of Drierite and silver oxide, and then the O-acetyl and methyl ester groups were removed by treatment with sodium hydroxide, and the N-tosyl group by means of sodium in liquid ammonia, to give 140. Synthesis of this compound has also been described by other workers108-110 and the a-D an-omer by Brendel and Davidson.108... [Pg.163]

Sulphonic esters have been obtained from the sulphonyl chlorides in high yields under mild conditions for a range of alcohols and phenols [e.g. 18, 19]. Of particular value is the protection of glycosides possessing a free hydroxyl group and hydroxy-steroids, which are tosylated readily under phase-transfer conditions [20-22]. Alkyl sulphinites have been obtained in a similar manner [23]. Alternatively, preformed tetra-rt-butylammonium sulphonates or their alkali metal salts have also been alkylated with haloalkanes or alkyl fluorosulphonates [24,25]. In contrast with more classical procedures, tosylation of alcohols, which are susceptible to E/Z-isomerism, e.g. Z-alk-2-en-l-ols, occurs with retention of their stereochemistry under phase-transfer catalysis [26]. [Pg.111]

In 2004, Bode and Rovis independently and concurrently reported the catalytic coupling of reducible aldehydes and alcohols. This mode of reactivity is most closely related to the work published by Wallach, who generated dichloroacetic acid from chloral under cyanide catalysis in aqueous media [108]. Bode and coworkers reported the catalytic, diastereoselective synthesis of P-hydroxy esters from a,P-epoxy aldehydes using thiazolium pre-catalyst 173 Eq. 16a [109]. MeOH, EtOH, and BnOH are effective nucleophiles providing upwards of >10 1 diastere-oselectivity. Aziridinylaldehyde 174 has also been shown to provide the desired iV-tosyl-P-aminoester 175 in 53% yield Eq. 16b. [Pg.109]


See other pages where Tosylates, also esters is mentioned: [Pg.181]    [Pg.181]    [Pg.494]    [Pg.943]    [Pg.65]    [Pg.511]    [Pg.433]    [Pg.57]    [Pg.81]    [Pg.204]    [Pg.80]    [Pg.148]    [Pg.134]    [Pg.492]    [Pg.565]    [Pg.1331]    [Pg.263]    [Pg.22]    [Pg.112]    [Pg.669]    [Pg.152]    [Pg.163]    [Pg.155]    [Pg.125]    [Pg.46]    [Pg.226]    [Pg.359]    [Pg.271]    [Pg.274]    [Pg.226]    [Pg.157]    [Pg.106]    [Pg.261]    [Pg.49]    [Pg.123]   


SEARCH



Tosyl esters

Tosylate esters

© 2024 chempedia.info