Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Torsional pendulum test method

There are several other comparable rheological experimental methods involving linear viscoelastic behavior. Among them are creep tests (constant stress), dynamic mechanical fatigue tests (forced periodic oscillation), and torsion pendulum tests (free oscillation). Viscoelastic data obtained from any of these techniques must be consistent data from the others. [Pg.42]

Part of the work performed on a sample will be converted irreversibly into random thermal motion by movement of the molecules or molecule segments. This loss passes through a maximum at the appropriate transition temperature or relaxation frequency in the associated alternating mechanical field (torsion pendulum test). A similar effect is obtained by the delayed response of the dipoles with dielectric measurements. Therefore, dielectric measurements can be made only on polar polymers. According to the frequency used, the glass-transition temperatures measured with dynamic methods lie higher than those obtained by quasistatic methods (see Section 10.5.2). [Pg.384]

This second group of tests is designed to measure the mechanical response of a substance to applied vibrational loads or strains. Both temperature and frequency can be varied, and thus contribute to the information that these tests can provide. There are a number of such tests, of which the major ones are probably the torsion pendulum and dynamic mechanical thermal analysis (DMTA). The underlying principles of these dynamic tests have been covered earlier. Such tests are used as relatively rapid methods of characterisation and evaluation of viscoelastic polymers, including the measurement of T, the study of the curing characteristics of thermosets, and the study of polymer blends and their compatibility. They can be used in essentially non-destructive modes and, unlike the majority of measurements made in non-dynamic tests, they yield data on continuous properties of polymeric materials, rather than discontinuous ones, as are any of the types of strength which are measured routinely. [Pg.116]

Before considering particular test methods, it is useful to survey the principles and terms used in dynamic testing. There are basically two classes of dynamic motion, free vibration in which the test piece is set into oscillation and the amplitude allowed to decay due to damping in the system, and forced vibration in which the oscillation is maintained by external means. These are illustrated in Figure 9.1 together with a subdivision of forced vibration in which the test piece is subjected to a series of half-cycles. The two classes could be sub-divided in a number of ways, for example forced vibration machines may operate at resonance or away from resonance. Wave propagation (e.g. ultrasonics) is a form of forced vibration method and rebound resilience is a simple unforced method consisting of one half-cycle. The most common type of free vibration apparatus is the torsion pendulum. [Pg.173]

A convenient method for determining transition times and transition temperatures of polymeric materials is dynamic mechanical analysis. One type of instrument which is particularly suitable for polymeric solids is the freely oscillating torsion pendulum (TP). Advantages of the TP include its simplicity, sensitivity, relatively low frequency ( 1 Hz) which permits direct correlation of transition temperatures with static nonmechanical methods (e.g., dilatometry and calorimetry), and its high resolution of transitions A major disadvantage of the conventional TP is that test temperatures are limited by the inability of materials to support their own weight near load-limiting transition temperatures. [Pg.88]

Standard Test Method for Dynamic Mechanical Properties of Plastics by Metals of a Torsional Pendulum... [Pg.12]

Because of the frequency dependence of Tg, the convention adopted for assignment of the glass transition temperature is an important consideration. Traditionally, a frequency of 1 Hz has been used as a standard value. This is based on the historic precedence, since the torsion pendulum was the most widely used DMA technique in the early days of viscoelastic property measurements. The torsion pendulum is a free vibration technique with a natural frequency of approximately 1 Hz. The 1 Hz value also is reasonably close (within 10 °C) to the Tg values determined by other widely used methods such as DSC, dilatometry, and TMA. The relation between DMA and DSC Tg values is considered further at the end of this chapter (Sircar and Drake 1990). Because of the ambiguity inherent in the kinetic nature of Tg, it is most important that the test frequency be reported along with any Tg value determined by a DMA technique. [Pg.417]

Free vibration and forced vibration methods have been employed to determine the respective data. Free vibration was common earlier in polymer blend studies, but forced vibration data is much more common today due to the availability of more sophisticated testing equipment. Free vibration methods include the torsion pendulum, the vibrating reed and the torsional braid analyzer. The torsion pendulum is comprised of an inertial source (disk or rod), which can freely vibrate and is attached to a specimen, which is rigidly fixed at one end. Upon angular deformation of the inertial source and releasing, a damped sinusoidal curve depicts the resultant deformation of the sample [18,19]. Tan S can be calculated from... [Pg.258]

Test method for dynamic mechanical properties of plastics by means of a torsional pendulum Practice for determining resistance of synthetic polymer material to fungi. Practice for determining resistance of plastics to bacteria... [Pg.637]


See other pages where Torsional pendulum test method is mentioned: [Pg.305]    [Pg.276]    [Pg.141]    [Pg.188]    [Pg.225]    [Pg.83]    [Pg.162]    [Pg.165]    [Pg.167]    [Pg.274]    [Pg.539]    [Pg.133]    [Pg.45]    [Pg.149]    [Pg.198]    [Pg.344]    [Pg.59]    [Pg.1733]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



PENDULUM TEST

Pendulum

Pendulum method

Testing torsion

Torsion pendulum

Torsion pendulum method

Torsion pendulum test

Torsion tests

Torsional pendulum

© 2024 chempedia.info