Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium oxide photonic efficiency

However, unlike photosynthesis in green plants, the titanium oxide photocatalyst does not absorb visible light and, therefore, it can make use of only 3-4% of solar photons that reach the Earth. Therefore, to address such enormous tasks, photocatalytic systems which are able to operate effectively and efficiently not only under ultraviolet (UV) but also under sunlight must be established. To this end, it is vital to design and develop unique titanium oxide photocatalysts which can absorb and operate with high efficiency under solar and/or visible-light irradiation [9-16]. [Pg.284]

The term upconversion describes an effect [1] related to the emission of anti-Stokes fluorescence in the visible spectral range following excitation of certain (doped) luminophores in the near infrared (NIR). It mainly occurs with rare-earth doped solids, but also with doped transition-metal systems and combinations of both [2, 3], and relies on the sequential absorption of two or more NIR photons by the dopants. Following its discovery [1] it has been extensively studied for bulk materials both theoretically and in context with uses in solid-state lasers, infrared quantum counters, lighting or displays, and physical sensors, for example [4, 5]. Substantial efforts also have been made to prepare nanoscale materials that show more efficient upconversion emission. Meanwhile, numerous protocols are available for making nanoparticles, nanorods, nanoplates, and nanotubes. These include thermal decomposition, co-precipitation, solvothermal synthesis, combustion, and sol-gel processes [6], synthesis in liquid-solid-solutions [7, 8], and ionothermal synthesis [9]. Nanocrystal materials include oxides of zirconium and titanium, the fluorides, oxides, phosphates, oxysulfates, and oxyfluoiides of the trivalent lanthanides (Ln ), and similar compounds that may additionally contain alkaline earth ions. Wang and Liu [6] have recently reviewed the theory of upconversion and the common materials and methods used. [Pg.30]


See other pages where Titanium oxide photonic efficiency is mentioned: [Pg.249]    [Pg.365]    [Pg.376]    [Pg.15]    [Pg.144]    [Pg.205]    [Pg.547]    [Pg.24]    [Pg.300]    [Pg.327]    [Pg.3766]    [Pg.298]    [Pg.204]    [Pg.235]    [Pg.348]    [Pg.372]    [Pg.858]   
See also in sourсe #XX -- [ Pg.594 ]




SEARCH



Oxides titanium oxide

Photon efficiency

Titanium oxidized

© 2024 chempedia.info