Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium, limitations from corrosion

Although most metals display an active or activation controlled region, when polarised anodically from the equilibrium potential, many metals and perhaps even more so alloys developed for engineering applications, produce a solid corrosion product. In many examples the solid is an oxide that is the stable phase rather than the ion in solution. If this solid product is formed at the metal surface and has good intimate contact with the metal, and features low ion-conductivity, the dissolution rate of the metal is limited to the rate at which metal ions can migrate through the film. The layer of corrosion product acts as a barrier to further ion movement across the interface. The resistance afforded by this corrosion layer is generally referred to as the passivity. Alloys such as the stainless steels, nickel alloys and metals like titanium owe their corrosion resistance to this passive layer. [Pg.156]

Under certain conditions it is possible for a weldment to suffer corrosive attack which has the form of a fusion line crack emanating from the toe of the weld this is termed knifeline attack. It is occasionally experienced in welded stabilised steels after exposure to hot strong nitric acids. The niobium-stabilised steels are more resistant than the titanium-stabilised types by virtue of the higher solution temperature of NbC, but the risk may be minimised by limiting the carbon content of a steel to 0-06 Vo maximum (ELC steel). [Pg.95]

The production of corrosion-resistant materials hy alloying is well established, hut the mechanisms are noi lull) understood. It is known, of course, that elements like chromium, mckcl. titanium, and aluminum depend for their corrosion resistance upon a tenacious surface oxide layer (passive film). Alloying elements added for the purpose of passivation must be in solid solution. The potential of ion implantation is promising because restrictions deriving from equilibrium phase diagrams frequently do not applv li e., concentrations of elements beyond tile limits of equilibrium solid solubility might he incorporated). This can lead to heretofore unknown alloyed surfact-s which are very corrosion resistant... [Pg.865]

All but one of the reactions in Figure 4 lead to the formation of the soluble TiO + ion this seems consistent with the observed changes in the visible absorption spectrum of the solid electrode. It may also be that other titanium species are formed in solution, such as peroxytitanium complexes like H Ti05 We have no direct evidence as to the identity of the solution species at this time, and have limited the candidate corrosion reactions shown in Figure 4 to those for which thermodynamic data are readily available. Nonetheless, the fact that titanium is observed in the electrolyte only upon extensive photocorrosion (and then in smaller amounts than strontium) suggests that the initial photocorrosion process involves the loss of strontium from the SrTi03, with the formation of Sr(0Ac)2 or SrSO. ... [Pg.199]

The various corrosion challenges which the industries are facing undoubtedly and frustratingly make them look for materials to protect their plant and equipment from the attacks due to corrosive media. While they search, rubber comes in to the forefront offering to face their corrosion challenges, in preference to costly metallic alternatives like titanium, manganese, stainless steel, etc. Non-metallics, such as fibre-reinforced plastics and specialty plastics, have limited application in critical areas. [Pg.173]

Pitting corrosion is usually associated with active-passive-type alloys and occurs under conditions specific to each alloy and environment. This mode of localized attack is of major commercial significance since it can severely limit performance in circumstances where, otherwise, the corrosion rates are extremely low. Susceptible alloys include the stainless steels and related alloys, a wide series of alloys extending from iron-base to nickel-base, aluminum, and aluminum-base alloys, titanium alloys, and others of commercial importance but more limited in use. In all of these alloys, the polarization curves in most media show a rather sharp transition from active dissolution to a state of passivity characterized by low current density and, hence, low corrosion rate. As emphasized in Chapter 5, environments that maintain the corrosion potential in the passive potential range generally exhibit extremely low... [Pg.277]


See other pages where Titanium, limitations from corrosion is mentioned: [Pg.76]    [Pg.76]    [Pg.76]    [Pg.605]    [Pg.33]    [Pg.463]    [Pg.548]    [Pg.877]    [Pg.272]    [Pg.102]    [Pg.114]    [Pg.24]    [Pg.273]    [Pg.57]    [Pg.32]    [Pg.452]    [Pg.696]    [Pg.275]    [Pg.120]    [Pg.39]    [Pg.226]    [Pg.247]    [Pg.254]    [Pg.255]    [Pg.256]    [Pg.258]    [Pg.446]    [Pg.472]    [Pg.907]    [Pg.1028]    [Pg.1048]    [Pg.1048]    [Pg.4]    [Pg.199]    [Pg.397]    [Pg.942]    [Pg.1600]    [Pg.301]    [Pg.563]    [Pg.316]    [Pg.390]    [Pg.379]   


SEARCH



Corrosion from

Corrosion limits

Titanium corrosion

Titanium limitation

© 2024 chempedia.info