Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium , crystal

The carbides and nitrides of vanadium and titanium crystallize in the same face centered cubic (fee) system, and because of the closeness of their cell parameters (Table 15.1) form solid solutions. These ceramic materials exhibit interesting mechanical, thermal, chemical and conductive properties.1,2 Their high melting point, hardness and wide range of composition have therefore attracted considerable attention in the last decade. Moreover, their good abrasion resistance and low friction also make these ceramics attractive for protective coating applications.3-5 Chemical vapor deposition (CVD) is a commonly used technique for the production of such materials. In the conventional thermally activated process, a mixture of gases is used.6-9 In the case of TiC, TiN, VC and VN, this mixture is... [Pg.158]

Perovskite, a mineral containing calcium, oxygen, and titanium, crystallizes in the following cubic unit cell ... [Pg.421]

Titanium metal has a density of 4.54 g/cm3 and an atomic radius of 144.8 pm. In what cubic unit cell does titanium crystallize ... [Pg.424]

Titanium crystallizes in a body-centered cubic unit ceU with an edge length of 3.306 A. The density of titanium is 4.401 g/cm Use these data to calculate Avogadro s number. [Pg.523]

Typical values of Young s modulus (E) for pure titanium at room temperature is in the range of 100 to 110 GPa (15 to 16 x 10 psi). This range agrees with the evaluated elastic modulus of single titanium crystals in a direction perpendicular to the c-axis (see figure). However, a low elastic modulus of 85 GPa (12.3 x 10 psi) at 25 °C (298 K) is predicted from the following equation ... [Pg.90]

Figure B2.1.1 Femtosecond light source based on an amplified titanium-sapphire laser and an optical parametric amplifier. Symbols used P, Brewster dispersing prism X, titanium-sapphire crystal OC, output coupler B, acousto-optic pulse selector (Bragg cell) FR, Faraday rotator and polarizer assembly DG, diffraction grating BBO, p-barium borate nonlinear crystal. Figure B2.1.1 Femtosecond light source based on an amplified titanium-sapphire laser and an optical parametric amplifier. Symbols used P, Brewster dispersing prism X, titanium-sapphire crystal OC, output coupler B, acousto-optic pulse selector (Bragg cell) FR, Faraday rotator and polarizer assembly DG, diffraction grating BBO, p-barium borate nonlinear crystal.
Figure B2.1.3 Output of a self-mode-locked titanium-sapphire oscillator (a) non-collinear intensity autocorrelation signal, obtained with a 100 pm p-barium borate nonlinear crystal (b) intensity spectrum. Figure B2.1.3 Output of a self-mode-locked titanium-sapphire oscillator (a) non-collinear intensity autocorrelation signal, obtained with a 100 pm p-barium borate nonlinear crystal (b) intensity spectrum.
Figure C2.17.6. Transmission electron micrograph and its Fourier transfonn for a TiC nanocrystal. High-resolution images of nanocrystals can be used to identify crystal stmctures. In tliis case, tire image of a nanocrystal of titanium carbide (right) was Fourier transfonned to produce tire pattern on tire left. From an analysis of tire spot geometry and spacing, one can detennine that tire nanocrystal is oriented witli its 11001 zone axis parallel to tire viewing direction [217]. Figure C2.17.6. Transmission electron micrograph and its Fourier transfonn for a TiC nanocrystal. High-resolution images of nanocrystals can be used to identify crystal stmctures. In tliis case, tire image of a nanocrystal of titanium carbide (right) was Fourier transfonned to produce tire pattern on tire left. From an analysis of tire spot geometry and spacing, one can detennine that tire nanocrystal is oriented witli its 11001 zone axis parallel to tire viewing direction [217].
Figure C2.17.7. Selected area electron diffraction pattern from TiC nanocrystals. Electron diffraction from fields of nanocrystals is used to detennine tire crystal stmcture of an ensemble of nanocrystals [119]. In tliis case, tliis infonnation was used to evaluate the phase of titanium carbide nanocrystals [217]. Figure C2.17.7. Selected area electron diffraction pattern from TiC nanocrystals. Electron diffraction from fields of nanocrystals is used to detennine tire crystal stmcture of an ensemble of nanocrystals [119]. In tliis case, tliis infonnation was used to evaluate the phase of titanium carbide nanocrystals [217].
Rochelle salt, see Potassium sodium tartrate 4-water Rock crystal, see Silicon dioxide Rutile, see Titanium(IV) oxide... [Pg.275]

Crystal structure of solids. The a-crystal form of TiCla is an excellent catalyst and has been investigated extensively. In this particular crystal form of TiCla, the titanium ions are located in an octahedral environment of chloride ions. It is believed that the stereoactive titanium ions in this crystal are located at the edges of the crystal, where chloride ion vacancies in the coordination sphere allow coordination with the monomer molecules. [Pg.490]

Figure 7.14a illustrates the insertion of a propylene monomer into an edge vacancy in a crystal adjacent to an alkylated titanium atom. In Fig. 7.14b a cross-sectional view of the same site shows how the preferential orientation of the coordinated monomer is dictated by constraints imposed by the protuberances on the crystal surface. [Pg.493]

Titanium(lV) fluoride dihydrate [60927-06-2] TiF 2H20, crystals can be prepared by the action of aqueous HF on titanium metal. The solution is carefully evaporated to obtain the crystals. Neutral solutions when heated slowly hydroly2e and form titanium(lV) oxyfluoride [13537-16-17, TiOF2 (6). Upon dissolution in hydrogen fluoride, TiF forms hexafluorotitanic acid [17439-11-17, ll]TiF. ... [Pg.255]

Ruthenium—Titanium Oxides. The x-ray diffractioa studies of mthenium—titanium oxide coatiags show that the coatiag components are preseat as the metal dioxides, each ia the mtile form as weU as ia soHd solutioa with each other (13). The developmeat of the crystal stmcture begias to occur at a bake temperature of about 400°C. By foUowiag the diffractioa line for the mtile stmcture, an iacrease ia crystallinity can be seen as temperatures are iacreased to the 600—700°C range. Above these temperatures, the peak begias to separate iato two separate peaks, iadicative of phase separatioa iato iadividual mtile oxides, oae rich ia mthenium and one rich ia titanium. [Pg.120]

A cmcial development for zinc phosphate coatings came in 1943 when it was found that more uniform and finer crystals would develop if the surface was first treated with a titanium-containing solution of disodium phosphate (6). This method of crystal modification is a prime reason for the excellent paint (qv) adhesion seen on painted metal articles. [Pg.222]

A significant advantage of the PLM is in the differentiation and recognition of various forms of the same chemical substance polymorphic forms, eg, brookite, mtile, and anatase, three forms of titanium dioxide calcite, aragonite and vaterite, all forms of calcium carbonate Eorms I, II, III, and IV of HMX (a high explosive), etc. This is an important appHcation because most elements and compounds possess different crystal forms with very different physical properties. PLM is the only instmment mandated by the U.S. Environmental Protection Agency (EPA) for the detection and identification of the six forms of asbestos (qv) and other fibers in bulk samples. [Pg.333]

MgCl2-Supported Catalysts. Examination of polymerizations with TiCl catalysts has estabUshed that only a small percentage of titanium located on lateral faces, edges, and along crystal defects is active (52) (see Titanium and titanium alloys). This led to the recognition that much of the catalyst mass acted only as a support, promoting considerable activity aimed at finding a support for active titanium that would not be detrimental to polymer properties. [Pg.410]


See other pages where Titanium , crystal is mentioned: [Pg.120]    [Pg.43]    [Pg.43]    [Pg.88]    [Pg.76]    [Pg.135]    [Pg.293]    [Pg.293]    [Pg.8]    [Pg.10]    [Pg.83]    [Pg.326]    [Pg.120]    [Pg.43]    [Pg.43]    [Pg.88]    [Pg.76]    [Pg.135]    [Pg.293]    [Pg.293]    [Pg.8]    [Pg.10]    [Pg.83]    [Pg.326]    [Pg.1374]    [Pg.1942]    [Pg.2902]    [Pg.7]    [Pg.43]    [Pg.107]    [Pg.10]    [Pg.502]    [Pg.497]    [Pg.500]    [Pg.213]    [Pg.72]    [Pg.120]    [Pg.120]    [Pg.168]    [Pg.223]    [Pg.137]    [Pg.383]    [Pg.410]   


SEARCH



© 2024 chempedia.info