Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium complexes activation

Atactic polypropene has been synthesized with homogeneous catalytic systems based on mono-Cp trialkoxo titanium complexes activated by MAO.951 Syndiotactic polystyrene has been synthesized with different mono-Gp trialkoxo titanium derivatives activated by MAO and AlMe3, and the catalytic efficiency has been compared with bis-Cp titanium catalysts.952 The titanium ligands affect both catalytic activity and stereoregularity of the polypropylene obtained. For the CpTi(OPrn)3/MAO system, factors influencing the propylene polymerization, such as temperature, Al/Ti molar ratio, and monomer pressure, have been studied. [Pg.494]

In spite of the high activities shown for BD polymerization by homogeneous catalyst systems, amongst these only a few have been found to be active for isoprene polymerization. MAO-activated titanium complexes produce 1,4-polyisoprene polymer with a prevalently cis microstructure (>94%). Recently, Miyazawa et al. have shown that monocyclopentadienyl titanium complexes activated by MAO can promote isoprene polymerization, giving polymers with narrow molecular weight distributions (Mw/Afn < 2) and cis contents of up to 92% with small amounts of 1,2- and 3,4-enchained structures also present. ... [Pg.454]

The chemistry of complexes having achiral ligands is based solely on the geometrical arrangement on titanium. Optically active alcohols are the most favored monodentate ligands. Cyclopentadienyl is also well suited for chiral modification of titanium complexes. [Pg.151]

We employed malononitrile and l-crotonoyl-3,5-dimethylpyrazole as donor and acceptor molecules, respectively. We have found that this reaction at room temperature in chloroform can be effectively catalyzed by the J ,J -DBFOX/Ph-nick-el(II) and -zinc(II) complexes in the absence of Lewis bases leading to l-(4,4-dicya-no-3-methylbutanoyl)-3,5-dimethylpyrazole in a good chemical yield and enantio-selectivity (Scheme 7.47). However, copper(II), iron(II), and titanium complexes were not effective at all, either the catalytic activity or the enantioselectivity being not sufficient. With the J ,J -DBFOX/Ph-nickel(II) aqua complex in hand as the most reactive catalyst, we then investigated the double activation method by using this catalyst. [Pg.291]

The dissociation of coordinatively sufficient organometallic complexes in solution. For instance, for the system based on cyclopentadienyl complexes of titanium the active centers of catalytic polymerization (C Hj) -TiR]+ are caused by the following process (178, 179) ... [Pg.204]

Some of the vinyl monomers polymerized by transition metal benzyl compounds are listed in Table IX. In this table R represents the rate of polymerization in moles per liter per second M sec-1), [M]0 the initial monomer concentration in moles per liter (M) and [C]0 the initial concentration of catalyst in the same units. The ratio i2/[M]0[C]0 gives a measure of the reactivity of the system which is approximately independent of the concentration of catalyst and monomer. It will be observed that the substitution in the benzyl group is able to affect the polymerization rate significantly, but the groups that increase the polymerization rate toward ethylene have the opposite effect where styrene is concerned. It would also appear that titanium complexes are more active than zirconium. The results with styrene and p-bromostyrene suggests that substituents in the monomer, which increase the electronegative character of the double bond, reduces the polymerization rate. The order of reactivity of various olefinically unsaturated compounds is approximately as follows ... [Pg.282]

Dianionic bis(amide) ligands bearing additional donor atoms have been described by several researchers. High activities for ethylene polymerization are observed for pyridyldiamido zirconium complexes such as (42) (1,500gmmol-1 bar-1 h-1),145 although the corresponding titanium complex is much less active.146... [Pg.8]

Certain half-sandwich phenoxides have been shown to be highly active olefin polymerization catalysts. For example, the zirconium complex (60) polymerizes ethylene with an activity of 1,220 gmmol-1 h-1 bar-1.181 A similar titanium complex (61) displays an activity of 560gmmol ll bar 1 at 60°C.182-189 Comparable activities were also recorded for the copolymerization of ethylene with 1-butene and 1-hexene. [Pg.10]

The highest ethylene polymerization activity for a tetradentate salen-type group 4 complex was reported for silica supported (64) (600gmmol-1h bar ).193 Activities for a range of related zirconium and titanium complexes such as (65)-(67) are typically an order of magnitude lower.194-196... [Pg.10]

Subsequent studies revealed that a variety of cyclopentadienyl-based titanium complexes may be used to catalyze the production of s-PS and this area has been extensively reviewed.350-353 Indeed, most complexes of the general formula (Cp )TiX3 generate s-PS when activated with a... [Pg.18]

The cyclopentadienyl group is another interesting ligand for immobilization. Its titanium complexes can be transformed by reduction with butyl lithium into highly active alkene hydrogenation catalysts having a TOF of about 7000 h 1 at 60 °C [85]. Similar metallocene catalysts have also been extensively studied on polymer supports, as shown in the following section. [Pg.1440]

Equation 9.9 shows a remarkable example of the simultaneous asymmetric construction of three stereogenic centers by the aforementioned reaction of an enyne—titanium complex (see Scheme 9.4) [25], using imines derived from optically active phenylethylamine as the electrophile. [Pg.326]

Reactions of aldehydes with complexes 13—17 provide optically active homoallylic alcohols. The enantioselectivities proved to be modest for 13—16 (20—45% ee). In contrast, they are very high (> 94% ee) for the (ansa-bis(indenyl))(r]3-allyl)titanium complex 17 [32], irrespective of the aldehyde structure, but only for the major anti diastereomers, the syn diastereomers exhibiting a lower level of ee (13—46% ee). Complex 17 also gives high chiral induction (> 94% ee) in the reaction with C02 [32], in contrast to complex 12 (R = Me 11 % ee R = H 19% ee) [15]. Although the aforementioned studies of enan-... [Pg.458]

Constrained-geometry catalysts for C2H4 polymerization 88 that are counterparts of well-known ansa-metallocene systems have been prepared and shown to be active, in combination with MAO, toward polymerization of ethylene the product is almost entirely polyethylene, with ca. 1% of 1-octene obtained. The titanium complex was found to be four times as active as the zirconium species.1... [Pg.34]

Triazacyclohexane also gives rise to very active catalysts with the use of chromium [13] as do ligands of the type RS(CH2)2NH(CH2)2SR [14], The latter coordinate in a meridional fashion, while the former can only coordinate in a facial fashion. Recently examples using cyclopentadienyl titanium complexes [15] and tantalum have been reported [16], The diversity of the chromium systems and the new metal systems show that very likely more catalysts will be discovered that are useful for this reaction, including 1-octene producing catalysts (1-octene is in high demand as a comonomer for ethene polymerisation for certain grades of polyethylene). [Pg.186]

The expected intermediate for the metathesis reaction of a metal alkylidene complex and an alkene is a metallacyclobutane complex. Grubbs studied titanium complexes and he found that biscyclopentadienyl-titanium complexes are active as metathesis catalysts, the stable resting state of the catalyst is a titanacyclobutane, rather than a titanium alkylidene complex [15], A variety of metathesis reactions are catalysed by the complex shown in Figure 16.8, although the activity is moderate. Kinetic and labelling studies were used to demonstrate that this reaction proceeds through the carbene intermediate. [Pg.342]

Olefin epoxidation is an important industrial domain. The general approach of SOMC in this large area was to understand better the elementary steps of this reaction catalyzed by silica-supported titanium complexes, to identify precisely reaction intermediates and to explain catalyst deachvahon and titanium lixiviation that take place in the industrial Shell SMPO (styrene monomer propylene oxide) process [73]. (=SiO) Ti(OCap)4 (OCap=OR, OSiRs, OR R = hydrocarbyl) supported on MCM-41 have been evaluated as catalysts for 1-octene epoxidation by tert-butyl hydroperoxide (TBHP). Initial activity, selechvity and chemical evolution have been followed. In all cases the major product is 1,2-epoxyoctane, the diol corresponding to hydrolysis never being detected. [Pg.113]

Figure 3.28 Activity (after 0.5 h) of various silica-supported titanium complexes, monopodal (=SiOTi(OCap)3 ... Figure 3.28 Activity (after 0.5 h) of various silica-supported titanium complexes, monopodal (=SiOTi(OCap)3 ...
Table3.7 Comparison ofinitial activities ofvarious MCM-41(soo) supported titanium complexes for 1 -octene epoxidation by TBHPat80°C (1-octene TBHP Ti = 3000 150 1). Table3.7 Comparison ofinitial activities ofvarious MCM-41(soo) supported titanium complexes for 1 -octene epoxidation by TBHPat80°C (1-octene TBHP Ti = 3000 150 1).
Snapper and Hoveyda reported a catalytic enantioselective Strecker reaction of aldimines using peptide-based chiral titanium complex [Eq. (13.11)]. Rapid and combinatorial tuning of the catalyst structure is possible in their approach. Based on kinetic studies, bifunctional transition state model 24 was proposed, in which titanium acts as a Lewis acid to activate an imine and an amide carbonyl oxygen acts as a Bronsted base to deprotonate HCN. Related catalyst is also effective in an enantioselective epoxide opening by cyanide "... [Pg.389]

We reported a catalytic enantioselective cyanosUylation of ketones that produces chiral tetrasubstituted carbons from a wide range of substrate ketones [Eq. (13.31)]. The catalyst is a titanium complex of a D-glucose-derived ligand 47. It was proposed that the reaction proceeds through a dual activation of substrate ketone by the titanium and TMSCN by the phosphine oxide (51), thus producing (l )-ketone cyanohydrins ... [Pg.399]


See other pages where Titanium complexes activation is mentioned: [Pg.404]    [Pg.368]    [Pg.379]    [Pg.404]    [Pg.368]    [Pg.379]    [Pg.311]    [Pg.189]    [Pg.138]    [Pg.73]    [Pg.342]    [Pg.57]    [Pg.73]    [Pg.18]    [Pg.19]    [Pg.519]    [Pg.24]    [Pg.32]    [Pg.591]    [Pg.276]    [Pg.517]    [Pg.325]    [Pg.517]    [Pg.133]    [Pg.20]    [Pg.4]    [Pg.113]    [Pg.176]    [Pg.200]    [Pg.435]    [Pg.33]    [Pg.120]    [Pg.213]   
See also in sourсe #XX -- [ Pg.271 , Pg.273 ]




SEARCH



Titanium activity

Titanium complexe

Titanium complexes

Titanium complexes dinitrogen activation

© 2024 chempedia.info