Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Time-dependent equation electron nuclear dynamics

Euler-Lagrange equations, electron nuclear dynamics (END), time-dependent variational principle (TDVP) basic ansatz, 330-333 free electrons, 333-334 Evans-Dewar-Zimmerman approach, phase-change rule, 435... [Pg.76]

Obviously, the BO or the adiabatic states only serve as a basis, albeit a useful basis if they are determined accurately, for such evolving states, and one may ask whether another, less costly, basis could be Just as useful. The electron nuclear dynamics (END) theory [1-4] treats the simultaneous dynamics of electrons and nuclei and may be characterized as a time-dependent, fully nonadiabatic approach to direct dynamics. The END equations that approximate the time-dependent Schrddinger equation are derived by employing the time-dependent variational principle (TDVP). [Pg.221]

Electron Nuclear Dynamics (48) departs from a variational form where the state vector is both explicitly and implicitly time-dependent. A coherent state formulation for electron and nuclear motion is given and the relevant parameters are determined as functions of time from the Euler equations that define the stationary point of the functional. Yngve and his group have currently implemented the method for a determinantal electronic wave function and products of wave packets for the nuclei in the limit of zero width, a "classical" limit. Results are coming forth protons on methane (49), diatoms in laser fields (50), protons on water (51), and charge transfer (52) between oxygen and protons. [Pg.13]

In this minimal END approximation, the electronic basis functions are centered on the average nuclear positions, which are dynamical variables. In the limit of classical nuclei, these are conventional basis functions used in moleculai electronic structure theoiy, and they follow the dynamically changing nuclear positions. As can be seen from the equations of motion discussed above the evolution of the nuclear positions and momenta is governed by Newton-like equations with Hellman-Feynman forces, while the electronic dynamical variables are complex molecular orbital coefficients that follow equations that look like those of the time-dependent Hartree-Fock (TDHF) approximation [24]. The coupling terms in the dynamical metric are the well-known nonadiabatic terms due to the fact that the basis moves with the dynamically changing nuclear positions. [Pg.228]

To properly describe electronic rearrangement and its dependence on both nuclear positions and velocities, it is necessary to develop a time-dependent theory of the electronic dynamics in molecular systems. A very useful approximation in this regard is the time-dependent Hartree-Fock approximation (34). Its combination with the eikonal treatment has been called the Eik/TDHF approximation, and has been implemented for ion-atom collisions.(21, 35-37) Approximations can be systematically developed from time-dependent variational principles.(38-41) These can be stated for wavefunctions and lead to differential equations for time-dependent parameters present in trial wavefunctions. [Pg.319]

The formulation outlined above allows for a simple stochastic implementation of the deterministic differential equation (35). Starting with an ensemble of trajectories on a given adiabatic PES W, at each time step At we (i) compute the transition probability pk k, (h) compare it to a random number ( e [0,1], and (iii) perform a hop if pt t > C- In Ih se of a pure A -level system (i.e., in the absence of nuclear dynamics), the assumption (37) holds in general, and the stochastic modeling of Eq. (35) is exact. Considering a vibronic problem with coordinate-dependent however, it can be shown that the electronic... [Pg.278]

The scheme we employ uses a Cartesian laboratory system of coordinates which avoids the spurious small kinetic and Coriolis energy terms that arise when center of mass coordinates are used. However, the overall translational and rotational degrees of freedom are still present. The unconstrained coupled dynamics of all participating electrons and atomic nuclei is considered explicitly. The particles move under the influence of the instantaneous forces derived from the Coulombic potentials of the system Hamiltonian and the time-dependent system wave function. The time-dependent variational principle is used to derive the dynamical equations for a given form of time-dependent system wave function. The choice of wave function ansatz and of sets of atomic basis functions are the limiting approximations of the method. Wave function parameters, such as molecular orbital coefficients, z,(f), average nuclear positions and momenta, and Pfe(0, etc., carry the time dependence and serve as the dynamical variables of the method. Therefore, the parameterization of the system wave function is important, and we have found that wave functions expressed as generalized coherent states are particularly useful. A minimal implementation of the method [16,17] employs a wave function of the form ... [Pg.49]

A mixed quantum classical description of EET does not represent a unique approach. On the one hand side, as already indicated, one may solve the time-dependent Schrodinger equation responsible for the electronic states of the system and couple it to the classical nuclear dynamics. Alternatively, one may also start from the full quantum theory and derive rate equations where, in a second step, the transfer rates are transformed in a mixed description (this is the standard procedure when considering linear or nonlinear optical response functions). Such alternative ways have been already studied in discussing the linear absorbance of a CC in [9] and the computation of the Forster-rate in [10]. [Pg.40]

This contains an TCP of the TpaL tensor, which is derived from the electron spin and dipole-dipole interaction tensor(See equation (11)). Hence, the first question we confront is whether those tensors are correlated or not. In case they are not the total TCP can be decomposed into a product of auto correlations for the the electron spin and dipole-dipole interaction tensor, respectively. In case they are, however, it is necessary to consider the whole TCP and the electron spin has to be correlated with the dipole-dipole interaction tensor. The time dependence in the electron spin tensor can be obtained by integrating the time dependent Schrbdinger equation for the electron spin under the electron spin Hamiltonian. The electron spin is just like the nuclear spin precessing around the external magnetic field and influenced by molecular dynamics. [Pg.296]


See other pages where Time-dependent equation electron nuclear dynamics is mentioned: [Pg.319]    [Pg.447]    [Pg.99]    [Pg.101]    [Pg.117]    [Pg.253]    [Pg.9]    [Pg.181]    [Pg.220]    [Pg.222]    [Pg.560]    [Pg.852]    [Pg.79]    [Pg.84]    [Pg.99]    [Pg.285]    [Pg.324]    [Pg.326]    [Pg.668]    [Pg.13]    [Pg.273]    [Pg.113]    [Pg.116]    [Pg.427]    [Pg.94]    [Pg.120]    [Pg.38]    [Pg.39]    [Pg.339]    [Pg.219]    [Pg.21]    [Pg.5]    [Pg.251]   


SEARCH



Dynamic equation

Dynamical equation

Dynamical equator

Electron dependence

Electron dynamics

Electron nuclear dynamics

Equation nuclear

Nuclear dynamics

Time-dependent equation

© 2024 chempedia.info