Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Three-component Aldolizations

Three-component Tandem Michael-Aldol Reaction [Pg.281]

Shibasaki and co-workers [19] reported a catalytic asymmetric tandem Michael-aldol reaction wherein cylopentenone 50, diethylmalonate, and 3-phenylpropanal react in the presence of Al-Li-(R)-BINOL complex catalyst 57 forming the corre- [Pg.281]

In the classic Passerini reaction (P-3CR), an a-acyloxy carboxamide is formed from the reaction of an isocyanide, an aldehyde (or ketone), and a carboxylic acid. The [Pg.282]

Although this reaction has been known since 1921 and is widely applied in natural product synthesis and drug discovery, catalytic asymmetric variants are rare. [Pg.283]


An interesting enzyme-catalyzed three-component aldolization reaction has been described by Gijsen and Wong [18]. Here, acetaldeyde, 2-substituted acetaldehydes, and dihydroxyacetone phosphate react in the presence of the aldolases 2-deoxyribose-5-phosphate aldolase (DERA) and fructose 1,6-diphosphate aldolase (RAMA) forming the corresponding 5-deoxyketose derivatives (Scheme 9.9). [Pg.281]

Scheme 9.9. Enzyme-catalyzed three-component aldolization. Scheme 9.9. Enzyme-catalyzed three-component aldolization.
Three-component aldol synthesis.1 This rhodium carbonyl can promote aldol coupling of enol silyl ethers with aldehydes or ketones. It can also effect coupling of an enone, an aldehyde, and a trialkylsilane to provide a silyl aldol. In the case of an enolizable aldehyde, yields are improved by addition of a phosphine ligand such as... [Pg.352]

Michael additions followed by further Michael additions have become popular reactions and are usually referred to as Michael Michael Induced Ring Closure (MIM1RC) reactions. A three component Michael-Michael-aldol reaction of ketone enolates with acrylates can be achieved, resulting in the formation of six-membered ring compounds with good efficiency and high diastereoselectivites319. [Pg.994]

A tin(II)-catalyzed asymmetric aldol reaction and lanthanide-catalyzed aqueous three-component reaction have been used as the key steps for the synthesis of febrifugine and isofebrifugine (Scheme 8.31).293... [Pg.276]

Domino Michael/aldol addition processes unquestionably represent the largest group of domino transformations. Numerous synthetic applications - for example, in natural product synthesis as well as for the preparation of other bioactive compounds - have been reported. Thus, the procedure is rather flexible and allows the use of many different substrates [12]. In this process it is possible, in theory, to establish up to two new C-C-bonds and three new stereogenic centers in a single step. For example, Collin s group developed a three-component approach. [Pg.51]

This finding is also in agreement with another three-component Michael/aldol addition reaction reported by Shibasaki and coworkers [14]. Here, as a catalyst the chiral AlLibis[(S)-binaphthoxide] complex (ALB) (2-37) was used. Such hetero-bimetallic compounds show both Bronsted basicity and Lewis acidity, and can catalyze aldol [15] and Michael/aldol [14, 16] processes. Reaction of cyclopentenone 2-29b, aldehyde 2-35, and dibenzyl methylmalonate (2-36) at r.t. in the presence of 5 mol% of 2-37 led to 3-hydroxy ketones 2-38 as a mixture of diastereomers in 84% yield. Transformation of 2-38 by a mesylation/elimination sequence afforded 2-39 with 92 % ee recrystallization gave enantiopure 2-39, which was used in the synthesis of ll-deoxy-PGFla (2-40) (Scheme 2.8). The transition states 2-41 and 2-42 illustrate the stereochemical result (Scheme 2.9). The coordination of the enone to the aluminum not only results in its activation, but also fixes its position for the Michael addition, as demonstrated in TS-2-41. It is of importance that the following aldol reaction of 2-42 is faster than a protonation of the enolate moiety. [Pg.53]

Feringa s group has demonstrated that cyclopentene-3,5-dione monoacetals as 2-47 can also be successfully applied as substrates in an asymmetric three-component domino Michael/aldol reaction with dialkyl zinc reagents 2-48 and aromatic aldehydes 2-49 [17]. In the presence of 2 mol% of the in-sitw-generated enantiomeri-cally pure catalyst Cu(OTf)2/phosphoramidite 2-54, the cyclopentanone derivatives 2-51 were formed nearly exclusively in good yields and with high ee-values (Scheme 2.11). [Pg.54]

Dialkyl(trimethylsilyl)phosphines undergo 1,4-addition to a,/3-unsaturated ketones and esters to give phosphine-substituted silyl enol ethers and silyl ketene acetals, respectively. A three-component coupling reaction of a silylphosphine, activated alkenes, and aldehydes in the presence of a catalytic amount of GsF affords an aldol product (Scheme 76).290 291... [Pg.780]

An interesting pericyclic-anionic-pericyclic domino reaction showing a high stereoselectivity is the cycloaddition-aldol-retro-ene process depicted in scheme 20.1581 The procedure presumably starts with a [4+2]-cycloaddition of diene 98 and S02 in presence of a Lewis acid. After opening of the formed adduct reaction with (Z)-silyl vinyl ether 99 leads to a mixture of alk-2-enesulfinic acids 101. It follows a retro-ene reaction which affords a 7 3 mixture of the products 102 and 103. The reaction described by Vogel et al is a nice example for the efficient generation of polypropionate chains with the stereoselective formation of three stereogenic centers and one (0-double bond in a three-component domino reaction in its strict definition. [Pg.53]

The first asymmetric procedure consists of the addition of R2Zn to a mixture of aldehyde and enone in the presence of the chiral copper catalyst (Scheme 7.14) [38, 52]. For instance, the tandem addition of Me2Zn and propanal to 2-cyclohexenone in the presence of 1.2 mol% chiral catalyst (S, R, R)-1S gave, after oxidation of the alcohol 51, the diketone 52 in 81% yield and with an ee of 97%. The formation of erythro and threo isomers is due to poor stereocontrol in the aldol step. A variety of trans-2,3-disubstituted cyclohexanones are obtained in this regioselective and enantioselective three-component organozinc reagent coupling. [Pg.243]

The method involves a regioselective, trans-diastereoselective, and enantioselective three-component coupling, as shown in Scheme 7.26. In this case, the zinc enolate resulting from the 1,4-addition is trapped in a palladium-catalyzed allyla-tion [64] to afford trans-2,3-disubstituted cyclohexanone 96. Subsequent palladium-catalyzed Wacker oxidation [82] yields the methylketone 97, which in the presence of t-BuOK undergoes an aldol cyclization. This catalytic sequence provides the 5,6-(98) and 5,7- (99) annulated structures with ees of 96%. [Pg.253]

Although imines are less electrophilic than carbonyl compounds, they are also more readily activated by acids or hydrogen bonding. For this reason, Mannich reactions are often faster than the corresponding aldol reactions. It is not even necessary to use preformed imines. In a typical three-component Mannich reaction, the acceptor imine is generated from an aromatic or otherwise protected primary amine. [Pg.51]

J0rgensen has also reported a sequential Michael/Michael/aldol condensation for the three component coupling of malonitrile 111 and a,P-unsaturated aldehydes that involves two iminium ion catalysed Michael additions followed by an intramolecular aldol condensation (Scheme 43) [170]. Using diarylprolinol ether 55 (10 mol%) in a concentrated toluene solution of malonitrile 111 and 3 equivalents of a,P-unsaturated aldehyde the reaction products can be isolated in just 1 8 h (57-89% yield 97-99% ee). The atom efficiency of this three component reaction is remarkable and the ability to prepare these complex products under... [Pg.316]

Scheme 6.4 Aldol-type three-component coupling of 11. Scheme 6.4 Aldol-type three-component coupling of 11.
We have explored two types of carbon-carbon bond forming reactions operated under almost neutral conditions. Both reactions are initiated by the formation of an H-Rh-Si species through oxidative addition of a hydrosilane to a low-valence rhodium complex. Aldol-type three-component couphngs are followed by the insertion of an a,yS-unsatu-rated carbonyl compound into a Rh-H bond, whereas silylformylation is accomplished by the insertion of an acetylenic moiety into a Rh-Si bond. [Pg.126]

When performing a Mannich reaction in its initial three-component design, the selectivity is sometimes difficult to obtain due to the competition with the side processes, primarily the auto-aldol condensation [52, 80], A common solution for this problem is the pre-formation of an imine or the enolate, or both and thus the sequential (indirect) performance of the reaction (Scheme 35) [52],... [Pg.190]

Dialkylzinc derivatives are inert towards conjugated enones (e.g. 181) in hydrocarbon or ethereal solvents. The discovery that a conjugate addition can be promoted by Cu(I) salts in the presence of suitable ligands L (e.g. sulphonamide 182) opened a new route to zinc enolates (e.g. 183), and hence to the development of three-component protocols, such as the tandem 1,4-addition/aldol addition process outlined in equation 92186. If the addition of the aldehyde is carried out at —78 °C, the single adduct 184 is formed, among four possible diastereomeric products. The presence of sulphonamide is fundamental in terms of reaction kinetics its role is supposed to be in binding both Cu(I) and Zn(II) and forming a mixed metal cluster compound which acts as the true 1,4-addition catalyst. [Pg.846]

Mukund Sibi of North Dakota State University has developed (J. Am. Chem. Soc. 2004,126,718) a powerful three-component coupling, combining an a,(5-unsaturated amide 9, a hydroxylamine 10, and an aldehyde 11. The hydroxylamine condenses with the aldehyde to give the nitrone, which then adds in a dipolar sense to the unsaturated ester. The reaction proceeds with high diastereocontrol, and the absolute configuration is set by the chiral Cu catalyst. As the amide 9 can be prepared by condensation of a phosphonacetate with another aldehyde, the product 12 can be seen as the product of a four-component coupling, chirally-controlled aldol addition and Mannich condensation on a starting acetamide. [Pg.63]

The three-component method is applicable to the synthesis of various C(6)- or C(7)-functionalized PGs. Scheme 11 illustrates the tandem conjugate addition-aldol reaction that affords 7-hydroxy-PGE derivatives (18). Both saturated and unsaturated C7 aldehydes can be used as a side-chain units. The aldol adducts can be transformed to naturally occurring PGs (5a, 19) and, more importantly, to a variety of analogues such as tumor-suppressing A7-PGA, (20) or 7-fluoro-PGI2, a stabilized prostacyclin (21). The unique cellular behavior displayed by A7-PGA methyl ester is well correlated to its chemical reaction with thiols (20). [Pg.357]

Three component [2 + 2 + 2 cycloadditions.x Lithium enolates of ketones react with methyl acrylate (2 equiv.) in THF at - 78° to form cyclohexanols (equation I). The reaction involves two sequential Michael additions and an aldol con-... [Pg.183]

List gave the first examples of the proline-catalyzed direct asymmetric three-component Mannich reactions of ketones, aldehydes, and amines (Scheme 14) [35], This was the first organocatalytic asymmetric Mannich reaction. These reactions do not require enolate equivalents or preformed imine equivalent. Both a-substituted and a-unsubstituted aldehydes gave the corresponding p-amino ketones 40 in good to excellent yield and with enantiomeric excesses up to 91%. The aldol addition and condensation products were observed as side products in this reaction. The application of their reaction to the highly enantioselective synthesis of 1,2-amino alcohols was also presented [36]. A plausible mechanism of the proline-catalyzed three-component Mannich reaction is shown in Fig. 2. The ketone reacts with proline to give an enamine 41. In a second pre-equilib-... [Pg.114]

Tributyltin enolates are useful radical mediators [47], although they generally exist in equilibrium with a-tributyltin ketones [48], Three-component coupling reactions proceed readily to give functionalized ketones in good to excellent yields, where an equilibrium shift to provide tin enolates operates efficiently (Scheme 6.28) [49]. Unlike the aforementioned case of allyltin-mediated reactions, acrolein is difficult to use in this reaction, since the Aldol reaction of the tin enolate with acrolein precedes the radical reaction. [Pg.183]

In origin, the Mannich reaction is a three-component reaction between an eno-lizable CH-acidic carbonyl compound, an amine, and an aldehyde producing / -aminocarbonyl compounds. Such direct Mannich reactions can encompass severe selectivity problems since both the aldehyde and the CH-acidic substrate can often act as either nucleophile or electrophile. Aldol addition and condensation reactions can be additional competing processes. Therefore preformed electrophiles (imines, iminium salts, hydrazones) or nucleophiles (enolates, enamines, enol ethers), or both, are often used, which allows the assignment of a specific role to each car-... [Pg.277]

Three-component Tandem Michael-Aldol Reaction I 281... [Pg.281]

In another study Feringa et al. [20] reported a catalytic enantioselective three-component tandem conjugate addition-aldol reaction of dialkyl zincs. Here, zinc enolates were generated in situ via catalytic enantioselective Michael addition of dialkylzinc compounds to cydohexenone in the presence of a chiral Cu catalyst. Their diastereoselective reaction with an aldehyde then gave trans-2,3-disubstituted cyclohexanones in up to 92% yields and up to >99% ees (Scheme 9.11). [Pg.282]

The required aldehyde precursor 186 was obtained by a Sn(II)-catalyzed asymmetric aldol reaction [90]. It was then mixed in one pot with o-methoxy aniline 187 and enol ether 188 to afford the key /7-amino ketone 189 in a 2 1 diastereomeric ratio through a Mannich-type three-component reaction. This reaction was performed in an aqueous medium and the use of a surfactant such as dodecyl sulfate (DS) was essential. The diastereomeric mixture 189 was treated with HF and the... [Pg.376]


See other pages where Three-component Aldolizations is mentioned: [Pg.281]    [Pg.281]    [Pg.348]    [Pg.127]    [Pg.200]    [Pg.114]    [Pg.328]    [Pg.69]    [Pg.787]    [Pg.581]    [Pg.226]    [Pg.187]    [Pg.193]    [Pg.347]    [Pg.347]    [Pg.366]    [Pg.390]   


SEARCH



Three-component

© 2024 chempedia.info