Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiol catalysis

The thioboration of terminal alkynes with 9-(alkylthio)-9-borabicyclo[3.3.1]-nonanes (9-RS-9-BBN) proceeds regio- and stereoselectively by catalysis of Pd(Ph,P)4 to produce the 9-[(Z)-2-(alkylthio)-l-alkeny)]-9-BBN derivative 667 in high yields. The protonation of the product 667 with MeOH affords the Markownikov adduct 668 of thiol to 1-alkyne. One-pot synthesis of alkenyl sulfide derivatives 669 via the Pd-catalyzed thioboration-cross-coupling sequence is also possible. Another preparative method for alkenyl sulfides is the Pd-catalyzed cross-coupling of 9-alkyl-9-BBN with l-bromo-l-phe-nylthioethene or 2-bromo-l-phenylthio-l-alkene[534]. [Pg.225]

Aryl sulfides are prepared by the reaction of aryl halides with thiols and thiophenol in DMSO[675,676] or by the use of phase-transfer catalysis[677]. The alkenyl sulfide 803 is obtained by the reaction of lithium phenyl sulfide (802) with an alkenyl bromide[678]. [Pg.247]

A thiol, usually under basic catalysis, can undergo Michael addition to an activated double bond, resulting in protection of the sulfhydryl group as a substituted 5-ethyl derivative. [Pg.295]

General acid catalysis is a catalysis by a Br(4nsted acid (other than the lyonium ion) acting by donating a proton. The addition of thiols to the carbonyl group is general acid catalyzed. ... [Pg.265]

So far, many kinds of nucleophiles active for hydrolysis such as imidazolyl-, amino-, pyridino-, carboxyl- and thiol-groups, have been used for preparation of hydrolase models. Overberger et al.108,1091 prepared copolymers of vinylimidazole and acrylic acid 60 (PVIm AA), by which the cationic substrate, 61 (ANTI), was hydrolyzed. This kind of copolymer is considered to be a model of acetylcholinesterase. With ANTI, the rate of the copolymer catalysis was higher than that of imidazole itself in the higher values of pH, as is seen in Table 9. In this work, important contributions of the electrostatic interactions are clear. The activity of the copolymer was not as high with the negatively charged and neutral substrates. [Pg.162]

The low reactivity of alkyl and/or phenyl substituted organosilanes in reduction processes can be ameliorated in the presence of a catalytic amount of alkanethiols. The reaction mechanism is reported in Scheme 5 and shows that alkyl radicals abstract hydrogen from thiols and the resulting thiyl radical abstracts hydrogen from the silane. This procedure, which was coined polarity-reversal catalysis, has been applied to dehalogenation, deoxygenation, and desulfurization reactions.For example, 1-bromoadamantane is quantitatively reduced with 2 equiv of triethylsilane in the presence of a catalytic amount of ferf-dodecanethiol. [Pg.136]

The mechanism for the lipase-catalyzed reaction of an acid derivative with a nucleophile (alcohol, amine, or thiol) is known as a serine hydrolase mechanism (Scheme 7.2). The active site of the enzyme is constituted by a catalytic triad (serine, aspartic, and histidine residues). The serine residue accepts the acyl group of the ester, leading to an acyl-enzyme activated intermediate. This acyl-enzyme intermediate reacts with the nucleophile, an amine or ammonia in this case, to yield the final amide product and leading to the free biocatalyst, which can enter again into the catalytic cycle. A histidine residue, activated by an aspartate side chain, is responsible for the proton transference necessary for the catalysis. Another important factor is that the oxyanion hole, formed by different residues, is able to stabilize the negatively charged oxygen present in both the transition state and the tetrahedral intermediate. [Pg.172]

In either the acid catalysis or the niekel carbonyl (or other metallic catalyst) method, if alcohols, thiols, amines, etc. are used instead of water, the product is the corresponding ester, thiol ester, or amide, instead of the carboxylic acid. [Pg.1037]

Autoclave reactions involving ethylene oxide with alkanethiols or an (unspecified) alcohol went out of control and exploded violently. Similar previous reactions had been uneventful [1], An arenethiol was being reacted with ethylene oxide under catalysis by a fraction of a percent of sodium hydroxide (solid) dissolved in the thiol to which the oxirane was slowly charged. After an initial exotherm a white solid precipitated, the exotherm died away and later resumed, with dissolution of the solid, the reaction then running out of control from the backlog of charged oxirane [2],... [Pg.314]

The combined information gathered from kinetic studies,184 in situ high-pressure NMR experiments,184,185,195 and the isolation of intermediates related to catalysis, leads to a common mechanism for all the hydrogenolysis reactions of (102)-(104) and other thiophenes catalyzed by triphos- or SULPHOS-rhodium complexes in conjuction with strong Bronsted bases. This mechanism (Scheme 41) involves the usual steps of C—S insertion, hydrogenation of the C—S inserted thiophene to the corresponding thiolate, and base-assisted reductive elimination of the thiol to complete the cycle.184 185 195-198... [Pg.104]

Antibody reduction usually is done in the presence of EDTA to prevent re-oxidation of the sulfhydryls by metal catalysis. In phosphate buffer at pH 6-7 and 4°C, one report stated that the number of available thiols decreased only by about 7 percent in the presence of EDTA over a 40-hour time span. In the absence of EDTA, this sulfhydryl loss increased to 63-90 percent... [Pg.792]

The conventional wisdom that one-electron oxidants react with thiols to yield disulfides is apparently derived from reactions in which trace copper catalysis dominated the chemistry. [Pg.367]

Geminal bis(hydrostannation) is attributed to quenching of the bis-2-tributylstannylethyl radical by the thiol, with polarity reversal catalysis (Equation (16)). [Pg.814]


See other pages where Thiol catalysis is mentioned: [Pg.137]    [Pg.95]    [Pg.137]    [Pg.95]    [Pg.506]    [Pg.170]    [Pg.495]    [Pg.509]    [Pg.124]    [Pg.115]    [Pg.496]    [Pg.161]    [Pg.194]    [Pg.26]    [Pg.429]    [Pg.290]    [Pg.265]    [Pg.105]    [Pg.40]    [Pg.161]    [Pg.1193]    [Pg.87]    [Pg.289]    [Pg.91]    [Pg.97]    [Pg.120]    [Pg.80]    [Pg.48]    [Pg.362]    [Pg.875]    [Pg.207]    [Pg.366]    [Pg.367]    [Pg.8]    [Pg.317]    [Pg.324]   
See also in sourсe #XX -- [ Pg.125 , Pg.136 , Pg.137 ]




SEARCH



Thiols hydrolysis, metal catalysis

© 2024 chempedia.info