Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics in aqueous

Frank, H. S. Evans, M. W. (1945). Entropy in binary liquid mixtures partial molal entropy in dilute solutions structure and thermodynamics in aqueous electrolytes. Journal of Chemical Physics, 13, 507-32. [Pg.52]

Frank, H., and M. Evans. 1945. Structure and Thermodynamics in Aqueous Electrolytes Free Volume and Entropy in Condensed Systems. III. ]. Chem. Phys. 13, 507-532. [Pg.132]

Frank HS, Evans MW. Eree volume and entropy in condensed systems. 3. entropy in binary liquid mixtures - partial molar entropy in dilute solutions - structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 1945 13 507-532. Gallicchio E, Kubo MM, Levy RM. Enthalpy-entropy and cavity decomposition of alkane hydration free energies numerical results and implications for theories of hydrophobic solvation. J. Phys. Chem. B 2000 104 6271-6285. [Pg.1922]

Feakins D, Waghome WE, Lawrence KG (1986) The viscosity and structure of solutions. Part 1. a new theory of the Jones-Dole B-coefficient and the related activation parameters application to aqueous solutions. J Chem Soc Faraday Trans 82 563-568 Frank HS, Evans MW (1945) Free volume and entropy in condensed systems. III. entropy in binary liquid mixtures partial molal entropy in dilute solutions structure and thermodynamics in aqueous electrolytes. J Chem Phys 13 507-532... [Pg.134]

Hydrogen chloride is completely ionized in aqueous solutions at all but the highest concentrations. Thermodynamic functions have been deterrnined electrochemicaHy for equations 7 and 8. Values are given in Table 7. [Pg.441]

The activity of the hydrogen ion is affected by the properties of the solvent in which it is measured. Scales of pH only apply to the medium, ie, the solvent or mixed solvents, eg, water—alcohol, for which the scales are developed. The comparison of the pH values of a buffer in aqueous solution to one in a nonaqueous solvent has neither direct quantitative nor thermodynamic significance. Consequently, operational pH scales must be developed for the individual solvent systems. In certain cases, correlation to the aqueous pH scale can be made, but in others, pH values are used only as relative indicators of the hydrogen-ion activity. [Pg.467]

The chemistry of plutonium ions in solution has been thoroughly studied and reviewed (30,94—97). Thermodynamic properties of aqueous ions of Pu are given in Table 8 and in the Uterature (64—66). The formal reduction potentials in aqueous solutions of 1 Af HCIO or KOH at 25°C maybe summarized as follows (66,86,98—100) ... [Pg.198]

The thermodynamic data pertinent to the corrosion of metals in aqueous media have been systematically assembled in a form that has become known as Pourbaix diagrams (11). The data include the potential and pH dependence of metal, metal oxide, and metal hydroxide reactions and, in some cases, complex ions. The potential and pH dependence of the hydrogen and oxygen reactions are also suppHed because these are the common corrosion cathodic reactions. The Pourbaix diagram for the iron—water system is given as Figure 1. [Pg.275]

Internal and External Phases. When dyeing hydrated fibers, for example, hydrophUic fibers in aqueous dyebaths, two distinct solvent phases exist, the external and the internal. The external solvent phase consists of the mobile molecules that are in the external dyebath so far away from the fiber that they are not influenced by it. The internal phase comprises the water that is within the fiber infrastmcture in a bound or static state and is an integral part of the internal stmcture in terms of defining the physical chemistry and thermodynamics of the system. Thus dye molecules have different chemical potentials when in the internal solvent phase than when in the external phase. Further, the effects of hydrogen ions (H" ) or hydroxyl ions (OH ) have a different impact. In the external phase acids or bases are completely dissociated and give an external or dyebath pH. In the internal phase these ions can interact with the fiber polymer chain and cause ionization of functional groups. This results in the pH of the internal phase being different from the external phase and the theoretical concept of internal pH (6). [Pg.351]

Each reactant and product appears in the Nemst equation raised to its stoichiometric power. Thermodynamic data for cell potentials have been compiled and graphed (3) as a function of pH. Such graphs are known as Pourbaix diagrams, and are valuable for the study of corrosion, electro deposition, and other phenomena in aqueous solutions.Erom the above thermodynamic analysis, the cell potential can be related to the Gibbs energy change... [Pg.63]

Trifluoromethylpteridine and its 7-methyl and 6,7-dimethyl derivatives (69JCS(C)l75l) are, as expected, even more subject to hydration. The first two are essentially completely hydrated across the 3,4-double bond at equilibrium in neutral solution and the last is partly hydrated. On dissolution of 4-trifluoromethylpteridine in aqueous acid the 5,6,7,8-dihy-drated cation is the main product initially, rearranging more slowly to the thermodynamically more stable 3,4-hydrate. [Pg.266]

A large programme utilizing temperature-jump relaxation methods for the study of tautomerism in aqueous solution has led the Dubois group to determine the kinetic and thermodynamic parameters of the equilibrium (130a) (130b) (78T2259). The tautomeric... [Pg.212]

Studies on metal-pyrazole complexes in solution are few. The enthalpy and entropy of association of Co(II), Ni(II), Cu(II) and Zn(II) with pyrazole in aqueous solution have been determined by direct calorimetry (81MI40406). The nature of the nitrogen atom, pyridinic or pyrrolic, involved in the coordination with the metal cannot be determined from the available thermodynamic data. However, other experiments in solution (Section 4.04.1.3.3(i)) prove conclusively that only the N-2 atom has coordinating capabilities. [Pg.226]

The values given in the following table for the heats and free energies of formation of inorganic compounds are derived from a) Bichowsky and Rossini, Thermochemistry of the Chemical Substances, Reinhold, New York, 1936 (h) Latimer, Oxidation States of the Elements and Their Potentials in Aqueous Solution, Prentice-Hall, New York, 1938 (c) the tables of the American Petroleum Institute Research Project 44 at the National Bureau of Standards and (d) the tables of Selected Values of Chemical Thermodynamic Properties of the National Bureau of Standards. The reader is referred to the preceding books and tables for additional details as to methods of calculation, standard states, and so on. [Pg.231]

Scales for bases that are too weak to study in aqueous solution employ other solvents but are related to the equilibrium in aqueous solution. These equilibrium constants provide a measure of thermodynamic basicity, but we also need to have some concept of kinetic basicity. For the reactions in Scheme 5.4, for example, it is important to be able to make generalizations about the rates of competing reactions. [Pg.292]

In the discussion of the relative acidity of carboxylic acids in Chapter 1, the thermodynamic acidity, expressed as the acid dissociation constant, was taken as the measure of acidity. It is straightforward to determine dissociation constants of such adds in aqueous solution by measurement of the titration curve with a pH-sensitive electrode (pH meter). Determination of the acidity of carbon acids is more difficult. Because most are very weak acids, very strong bases are required to cause deprotonation. Water and alcohols are far more acidic than most hydrocarbons and are unsuitable solvents for generation of hydrocarbon anions. Any strong base will deprotonate the solvent rather than the hydrocarbon. For synthetic purposes, aprotic solvents such as ether, tetrahydrofuran (THF), and dimethoxyethane (DME) are used, but for equilibrium measurements solvents that promote dissociation of ion pairs and ion clusters are preferred. Weakly acidic solvents such as DMSO and cyclohexylamine are used in the preparation of strongly basic carbanions. The high polarity and cation-solvating ability of DMSO facilitate dissociation... [Pg.405]

Recently Stamhuis et al. (33) have determined the base strengths of morpholine, piperidine, and pyrrolidine enamines of isobutyraldehyde in aqueous solutions by kinetic, potentiometric, and spectroscopic methods at 25° and found that these enamines are 200-1000 times weaker bases than the secondary amines from which they are formed and 30-200 times less basic than the corresponding saturated tertiary enamines. The baseweakening effect has been attributed to the electron-withdrawing inductive effect of the double bond and the overlap of the electron pair on the nitrogen atom with the tt electrons of the double bond. It was pointed out that the kinetic protonation in the hydrolysis of these enamines occurs at the nitrogen atom, whereas the protonation under thermodynamic control takes place at the -carbon atom, which is, however, dependent upon the pH of the solution (84,85). The measurement of base strengths of enamines in chloroform solution show that they are 10-30 times weaker bases than the secondary amines from which they are derived (4,86). [Pg.50]

The acid-base classificationd l turns essentially on the thermodynamic properties of hydroxides in aqueous solution, since oxides themselves are not soluble as such (p. 630). Oxides may be ... [Pg.640]


See other pages where Thermodynamics in aqueous is mentioned: [Pg.109]    [Pg.109]    [Pg.662]    [Pg.820]    [Pg.834]    [Pg.109]    [Pg.109]    [Pg.662]    [Pg.820]    [Pg.834]    [Pg.18]    [Pg.163]    [Pg.591]    [Pg.269]    [Pg.470]    [Pg.400]    [Pg.163]    [Pg.35]    [Pg.317]    [Pg.531]    [Pg.293]    [Pg.436]    [Pg.628]    [Pg.853]   


SEARCH



In Thermodynamics of Aqueous Systems with Industrial Applications Newman

In Thermodynamics of Aqueous Systems with Industrial Applications Newman ACS Symposium Series American Chemical Society: Washington

Oxidation states thermodynamic aspects in aqueous

Thermodynamic Stability in Aqueous Solutions

Thermodynamic aspects oxidation states in aqueous solution

Thermodynamics dissolution of ionic salts in aqueous

Thermodynamics in aqueous solutions

© 2024 chempedia.info