Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics identifying

A system can in principle undergo an indefinite number of processes under the constraint that energy is conserved. While the first law of thermodynamics identifies the allowed changes, a new state function, the entropy A, is needed to identify the spontaneous changes among the allowed changes. The second law of thermodynamics may be expressed as... [Pg.12]

A good solvent is the technical as well as descriptive term used to identify a solvent which tends to increase coil dimensions. Since this is a consequence of thermodynamically favorable polymer-solvent interactions, good solvents also dissolve polymers more readily in the first place. [Pg.60]

The kinetic nature of the glass transition should be clear from the last chapter, where we first identified this transition by a change in the mechanical properties of a sample in very rapid deformations. In that chapter we concluded that molecular motion could simply not keep up with these high-frequency deformations. The complementarity between time and temperature enters the picture in this way. At lower temperatures the motion of molecules becomes more sluggish and equivalent effects on mechanical properties are produced by cooling as by frequency variations. We shall return to an examination of this time-temperature equivalency in Sec. 4.10. First, however, it will be profitable to consider the possibility of a thermodynamic description of the transition which occurs at Tg. [Pg.244]

Not all of the isotherm models discussed in the following are rigorous in the sense of being thermodynamically consistent. For example, specific deficiencies in the Freundhch, Sips, Dubinin-Radushkevich, Toth, and vacancy solution models have been identified (14). [Pg.273]

The thermodynamics and physical properties of the mixture to be separated are examined. VLE nodes and saddles, LLE binodal curves, etc, are labeled. Critical features and compositions of interest are identified. A stream is selected from the source Hst. This stream is either identified as meeting all the composition objectives of a destination, or else as in need of further processing. Once an opportunistic or strategic operation is selected and incorporated into the flow sheet, any new sources or destinations are added to the respective Hsts. If a strategic separation for dealing with a particular critical feature has been implemented, then that critical feature is no longer of concern. Alternatively, additional critical features may arise through the addition of new components such as a MSA. The process is repeated until the source Hst is empty and all destination specifications have been satisfied. [Pg.450]

This reaction is catalyzed by iron, and extensive research, including surface science experiments, has led to an understanding of many of the details (72). The adsorption of H2 on iron is fast, and the adsorption of N2 is slow and characterized by a substantial activation energy. N2 and H2 are both dis so datively adsorbed. Adsorption of N2 leads to reconstmction of the iron surface and formation of stmctures called iron nitrides that have depths of several atomic layers with compositions of approximately Fe N. There is a bulk compound Fe N, but it is thermodynamically unstable when the surface stmcture is stable. Adsorbed species such as the intermediates NH and NH2 have been identified spectroscopically. [Pg.176]

Of the legion of partially saturated six-membered ring heterocycles, an idea of their stability, or lack of it, can normally be gained by consideration of the thermodynamic stability of the various components which can be identified in them. Thus, those rings which contain ester or amide functions can be expected to possess the chemical reactivity and the... [Pg.4]

The concept of equilibrium is central in thermodynamics, for associated with the condition of internal eqmlibrium is the concept of. state. A system has an identifiable, reproducible state when 1 its propei ties, such as temperature T, pressure P, and molar volume are fixed. The concepts oi state a.ndpropeity are again coupled. One can equally well say that the properties of a system are fixed by its state. Although the properties T, P, and V may be detected with measuring instruments, the existence of the primitive thermodynamic properties (see Postulates I and 3 following) is recognized much more indirectly. The number of properties for wdiich values must be specified in order to fix the state of a system depends on the nature of the system and is ultimately determined from experience. [Pg.513]

Partial Molar Properties Consider a homogeneous fluid solution comprised of any number of chemical species. For such a PVT system let the symbol M represent the molar (or unit-mass) value of any extensive thermodynamic property of the solution, where M may stand in turn for U, H, S, and so on. A total-system property is then nM, where n = Xi/i, and i is the index identifying chemical species. One might expect the solution propei fy M to be related solely to the properties M, of the pure chemical species which comprise the solution. However, no such generally vahd relation is known, and the connection must be establi ed experimentally for eveiy specific system. [Pg.517]

Boyce, M.P., How to Identify and Correct Efficiency Losses Through Modeling Plant Thermodynamics, Proceedings of the CCGT Generation Power Conference, London, United Kingdom, March, 1999. [Pg.691]

Now, equations are given to identify whether the reactions are thermodynamically favorable. The method uses Gibbs free energy of formation for the reactants and products. [Pg.376]

Again it is seen that only when second order effects need to be considered does the relationship become more complicated. The dead volume is made up of many components, and they need not be identified and understood, particularly if the thermodynamic properties of a distribution system are to be examined. As a consequence, the subject of the column dead volume and its measurement in chromatography systems will need to be extensively investigated. Initially, however, the retention volume equation will be examined in more detail. [Pg.25]

About 1902, J. W. Gibbs (1839-1903) introduced statistical mechanics with which he demonstrated how average values of the properties of a system could be predicted from an analysis of the most probable values of these properties found from a large number of identical systems (called an ensemble). Again, in the statistical mechanical interpretation of thermodynamics, the key parameter is identified with a temperature, which can be directly linked to the thermodynamic temperature, with the temperature of Maxwell s distribution, and with the perfect gas law. [Pg.3]

In order to address these challenges, a hierarchical approach may be adopted. This approach focuses on the big picture first, then adds details to promising solutions. Therefore, preliminary screening ought to be conducted first to identify overall reaction alternatives that meet process requirements in terms of desired product, cost effectiveness, environmental acceptability, and thermodynamic feasibility. At this stage, minimum details are to be invoked. The problem of synthesizing environmentally acceptable reactions EARs has been introduced by Crabtree and El-Halwagi (1994) and can be stated as follows ... [Pg.290]

In order to generate a candidate EAR, one should consider potential raw materials and by-products, satisfaction of stoichiometric conditions, assurance of thermodynamic feasibility, and fulfillment of environmental requirements. These issues can be addressed by employing an optimization formulation to identify an overall reaction that yields the desired product at maximum economic potential while satisfying stoichiometric, thermodynamic, and environmental constraints. For a more detailed description of this optimization program, the reader is referred to Crabtree and El-Halwagi (1994). [Pg.290]

Most dienones that have been reduced have structures such that they cannot give epimeric products. However, reduction of 17 -hydroxy-7,17a-dimethyl-androsta-4,6-dien-3-one (63) affords 17 -hydroxy-7j9,17a-dimethylandrost-4-en-3-one (64), the thermodynamically most stable product, albeit in only 16% yield. The remainder of the reduction product was not identified. Presumably the same stereoelectronic factors that control protonation of the / -carbon of the allyl carbanion formed from an enone control the stereochemistry of the protonation of the (5-carbon of the dienyl carbanion formed from a linear dienone. The formation of the 7 -methyl compound from compound (63) would be expected on this basis. [Pg.36]

The fugitive species SO was first identified by its ultraviolet spectrum in 1929 but it is thermodynamically unstable and decomposes completely in the gas phase in less than I s. It is formed by reduction of SOn with sulfur vapour in a glow discharge and its spectroscopic properties... [Pg.696]


See other pages where Thermodynamics identifying is mentioned: [Pg.8]    [Pg.125]    [Pg.403]    [Pg.2]    [Pg.7]    [Pg.147]    [Pg.161]    [Pg.125]    [Pg.120]    [Pg.250]    [Pg.8]    [Pg.125]    [Pg.403]    [Pg.2]    [Pg.7]    [Pg.147]    [Pg.161]    [Pg.125]    [Pg.120]    [Pg.250]    [Pg.163]    [Pg.317]    [Pg.593]    [Pg.62]    [Pg.35]    [Pg.88]    [Pg.63]    [Pg.447]    [Pg.448]    [Pg.328]    [Pg.401]    [Pg.192]    [Pg.131]    [Pg.163]    [Pg.333]    [Pg.47]    [Pg.127]    [Pg.291]    [Pg.29]    [Pg.412]    [Pg.141]    [Pg.184]    [Pg.214]    [Pg.443]   


SEARCH



© 2024 chempedia.info