Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic quantities entropy

Because changes in the thermodynamic quantity entropy may be understood in terms of changes in molecular disorder, we can often predict the sign of The following illustrations emphasize several common types of processes that result in predictable entropy changes for the system. [Pg.626]

Based on all these examples, we might conclude that exothermic processes tend to be spontaneous, but we carmot use enthalpy change alone to predict whether a process will be spontaneous. To predict spontaneity, we must consider another thermodynamic quantity entropy. [Pg.726]

The relations which permit us to express equilibria utilize the Gibbs free energy, to which we will give the symbol G and which will be called simply free energy for the rest of this chapter. This thermodynamic quantity is expressed as a function of enthalpy and entropy. This is not to be confused with the Helmholtz free energy which we will note sF (L" j (j, > )... [Pg.148]

To compute zero-point vibration and thermal energy corrections to total energies as well as other thermodynamic quantities of interest such and the enthalpy and entropy of the system. [Pg.61]

Gaussian predicts various important thermodynamic quantities at the specified temperature and pressure, including the thermal energy correction, heat capacity and entropy. These items are broken down into their source components in the output ... [Pg.67]

A considerable variety of experimental methods has been applied to the problem of determining numerical values for barriers hindering internal rotation. One of the oldest and most successful has been the comparison of calculated and observed thermodynamic quantities such as heat capacity and entropy.27 Statistical mechanics provides the theoretical framework for the calculation of thermodynamic quantities of gaseous molecules when the mass, principal moments of inertia, and vibration frequencies are known, at least for molecules showing no internal rotation. The theory has been extended to many cases in which hindered internal rotation is... [Pg.369]

Lead, excess entropy of solution of noble metals in, 133 Lead-thalium, solid solution, 126 Lead-tin, system, energy of solution, 143 solution, enthalpy of formation, 143 Lead-zinc, alloy (Pb8Zn2), calculation of thermodynamic quantities, 136 Legendre expansion in total ground state wave function of helium, 294 Lennard-Jones 6-12 potential, in analy-... [Pg.408]

Silver-copper, energy of solutions, 142 Silver-gold, excess entropy, 132, 136 excess free energy, 136 Silver-lead, alloy (AgsPb5), calculation of thermodynamic quantities, 136 Silver-zinc, alloy (Ag5Zn5), 129... [Pg.411]

What Are the Key Ideas Tlic direction of natural change coi responds 10 the increasing disorder of energy and matter. Disorder is measured by the thermodynamic quantity called entropy. A related quantity—the Gibbs free energy—provides a link between thermodynamics and the description of chemical equilibrium. [Pg.386]

It should be born in mind, however, that the activation parameters calculated refer to the sum of several reactions, whose enthalpy and/or entropy changes may have different signs from those of the decrystalUzation proper. Specifically, the contribution to the activation parameters of the interactions that occur in the solvent system should be taken into account. Consider the energetics of association of the solvated ions with the AGU. We may employ the extra-thermodynamic quantities of transfer of single ions from aprotic to protic solvents as a model for the reaction under consideration. This use is appropriate because recent measurements (using solvatochromic indicators) have indicated that the polarity at the surface of cellulose is akin to that of aliphatic alcohols [99]. Single-ion enthalpies of transfer indicate that Li+ is more efficiently solvated by DMAc than by alcohols, hence by cellulose. That is, the equilibrium shown in Eq. 7 is endothermic ... [Pg.123]

Other thermodynamic quantities such as chemical potential and entropy also follow directly from the partition function, as we demonstrate later on. However, to illustrate what a partition function means, we will first discuss two relatively simple but instructive examples. [Pg.82]

Three types of methods are used to study solvation in molecular solvents. These are primarily the methods commonly used in studying the structures of molecules. However, optical spectroscopy (IR and Raman) yields results that are difficult to interpret from the point of view of solvation and are thus not often used to measure solvation numbers. NMR is more successful, as the chemical shifts are chiefly affected by solvation. Measurement of solvation-dependent kinetic quantities is often used (<electrolytic mobility, diffusion coefficients, etc). These methods supply data on the region in the immediate vicinity of the ion, i.e. the primary solvation sphere, closely connected to the ion and moving together with it. By means of the third type of methods some static quantities entropy and compressibility as well as some non-thermodynamic quantities such as the dielectric constant) are measured. These methods also pertain to the secondary solvation-sphere, in which the solvent structure is affected by the presence of ions, but the... [Pg.32]

The slope of the line allows for the determination of the enthalpy of vaporization of water, A//Vap, and the y intercept yields the entropy of vaporization, A. S vap As both the enthalpy and the entropy of water increase as the phase change liquid — vapor occurs, the slope and y intercept of the Clausius-Clapeyron equation are negative and positive, respectively. At 373 K these thermodynamic quantities have values of AHvap = 40.657 kJ mol-1 and ASvap = 109.0 J K-1 mol-1. The leavening action due to water vapor or steam arises from the increased amount of water vapor that forms as pastry temperatures initially rise in the oven and then from the increased volume of the water vapor as temperatures continue... [Pg.68]

Fig. 2.12. Enthalpy, entropy, and free energy differences for the ethane —> ethane zero-sum alchemical transformation in water. The molecular dynamics simulations are similar to those described in Fig. (2.7). 120 windows (thin lines) and 32 windows (thick lines) of uneven widths were utilized to switch between the alternate topologies, with, respectively, 20 and lOOps of equilibration and 100 and 500 ps of data collection, making a total of 14.4 and 19.2 ns. The enthalpy (dashed lines) and entropy (dotted lines) difference amount to, respectively, —0.1 and +1.1 kcalmol-1, and —0.5 and +4.1 calmol-1 K For comparison purposes, the free energy difference is equal to, respectively, +0.02 and —0.07kcalmol I, significantly closer to the target value. Inset Convergence of the different thermodynamic quantities... Fig. 2.12. Enthalpy, entropy, and free energy differences for the ethane —> ethane zero-sum alchemical transformation in water. The molecular dynamics simulations are similar to those described in Fig. (2.7). 120 windows (thin lines) and 32 windows (thick lines) of uneven widths were utilized to switch between the alternate topologies, with, respectively, 20 and lOOps of equilibration and 100 and 500 ps of data collection, making a total of 14.4 and 19.2 ns. The enthalpy (dashed lines) and entropy (dotted lines) difference amount to, respectively, —0.1 and +1.1 kcalmol-1, and —0.5 and +4.1 calmol-1 K For comparison purposes, the free energy difference is equal to, respectively, +0.02 and —0.07kcalmol I, significantly closer to the target value. Inset Convergence of the different thermodynamic quantities...
Papisov et al. (1974) performed calorimetric and potentiometric experiments to determine the thermodynamic parameters of the complex formation of PMAA and PAA with PEG. They investigated how temperature and the nature of the solvent affected the complex stability. They found that in aqueous media the enthalpy and entropy associated with the formation of the PMAA/PEG complex are positive while in an aqueous mixture of methanol both of the thermodynamic quantities become negative. The exact values are shown in Table II. The viscosities of aqueous solutions containing complexes of PMAA and PEG increase with decreasing temperature as a result of a breakdown of the complexes. [Pg.93]

Table 5 lists equilibrium data for a new hypothetical gas-phase cyclisation series, for which the required thermodynamic quantities are available from either direct calorimetric measurements or statistical mechanical calculations. Compounds whose tabulated data were obtained by means of methods involving group contributions were not considered. Calculations were carried out by using S%g8 values based on a 1 M standard state. These were obtained by subtracting 6.35 e.u. from tabulated S g-values, which are based on a 1 Atm standard state. Equilibrium constants and thermodynamic parameters for these hypothetical reactions are not meaningful as such. More significant are the EM-values, and the corresponding contributions from the enthalpy and entropy terms. [Pg.21]

It has been suggested that an increase in the coordination number of vanadium from 4 to 5 already takes place in the second protonation step, i.e. when [H2V04] is formed (21). For reactions (1) and (2), however, the protonation constants and thermodynamic parameters are comparable with those reported for P04 and As04 , providing firm evidence that reaction (2) is not accompanied by incorporation of water in the vanadate ion (15, 17). Further, the estimated thermodynamic quantities for reaction (6), AH° = -39 kJ/mol and AS0 = —51 J/(mol K), obtained by extrapolation from the experimental values for reactions (1) and (2) and those for the three protonation steps of P04 and As04 , are not typical of a simple protonation reaction (17). For such a reaction the entropy change is normally a positive quantity often amounting to 100 50 J/(mol K) and the enthalpy... [Pg.130]

The Gibbs free energy is a thermodynamic quantity that relates the enthalpy and entropy, and is the best indicator for whether or not a reaction is spontaneous. [Pg.136]

The thermodynamic theories [7,8] deny the pure kinetic nature of the glass transition and link it directly to thermodynamic quantities like the configurational entropy of the material. Some recent results suggest a correlation between kinetic quantities and thermodynamic parameters [9]. Also recently, this theory was successfully merged with a potential landscape approach [10]. The thermodynamic approach is interesting since it reflects the different configurations that are allowed not only for the whole ensemble but also for the internal conformations... [Pg.100]

Innate Thermodynamic Quantities. Certain components of the total change in AG° are innate, because such parameters have nonzero values, even when extrapolated to 0 K. Other components change with temperature e.g., at r = 0 K, TA = 0). Because A = U - TS and G = H - TS - then = Go°) = (Ao° = Uo°) at absolute zero. Except for entropy, the residual values of these quantities are the same at absolute zero, and they describe the innate thermodynamic behavior of the system. [Pg.365]

Statistical thermodynamic mean-field theory of polymer solutions, first formulated independently by Flory, Huggins, and Staverman, in which the thermodynamic quantities of the solution are derived from a simple concept of combinatorial entropy of mixing and a reduced Gibbs-energy parameter, the X interaction parameter. [Pg.55]


See other pages where Thermodynamic quantities entropy is mentioned: [Pg.767]    [Pg.24]    [Pg.767]    [Pg.24]    [Pg.158]    [Pg.255]    [Pg.396]    [Pg.397]    [Pg.61]    [Pg.84]    [Pg.458]    [Pg.136]    [Pg.598]    [Pg.386]    [Pg.463]    [Pg.110]    [Pg.28]    [Pg.66]    [Pg.113]    [Pg.77]    [Pg.128]    [Pg.29]    [Pg.28]    [Pg.337]    [Pg.8]    [Pg.329]    [Pg.118]    [Pg.62]    [Pg.675]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Entropy thermodynamic

Thermodynamic quantities

Thermodynamics entropy

© 2024 chempedia.info