Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal analysis crystallinity

Polypropylene molecules repeatedly fold upon themselves to form lamellae, the sizes of which ate a function of the crystallisa tion conditions. Higher degrees of order are obtained upon formation of crystalline aggregates, or spheruHtes. The presence of a central crystallisation nucleus from which the lamellae radiate is clearly evident in these stmctures. Observations using cross-polarized light illustrates the characteristic Maltese cross model (Fig. 2b). The optical and mechanical properties ate a function of the size and number of spheruHtes and can be modified by nucleating agents. Crystallinity can also be inferred from thermal analysis (28) and density measurements (29). [Pg.408]

Thermodynamic Properties. The thermodynamic melting point for pure crystalline isotactic polypropylene obtained by the extrapolation of melting data for isothermally crystallized polymer is 185°C (35). Under normal thermal analysis conditions, commercial homopolymers have melting points in the range of 160—165°C. The heat of fusion of isotactic polypropylene has been reported as 88 J/g (21 cal/g) (36). The value of 165 18 J/g has been reported for a 100% crystalline sample (37). Heats of crystallization have been determined to be in the range of 87—92 J/g (38). [Pg.408]

The value for the heat of fusion of PPS, extrapolated to a hypothetical 100% crystalline state, is not agreed upon in the literature. Reported values range from approximately 80 J/g (19 cal/g) (36,96,101) to 146 J/g (35 cal/g) (102), with one intermediate value of 105 J/g (25 cal/g) (20). The lower value, 80 J/g, was originally measured by thermal analysis and then correlated with a measure of crystallinity deterrnined by x-ray diffraction (36). The value of 146 J/g was deterrnined independendy on uniaxiaHy oriented PPS film samples by thermal analysis, density measurement via density-gradient column, and the use of a calculated density for 100% crystalline PPS to arrive at a heat of fusion for 100% crystalline PPS (102). The value of 105 J/g was obtained by measuring the heats of fusion of weU-characterized linear oligomers of PPS and extrapolation to infinite molecular weight. [Pg.446]

Crystallization kinetics have been studied by differential thermal analysis (92,94,95). The heat of fusion of the crystalline phase is approximately 96 kj/kg (23 kcal/mol), and the activation energy for crystallization is 104 kj/mol (25 kcal/mol). The extent of crystallinity may be calculated from the density of amorphous polymer (d = 1.23), and the crystalline density (d = 1.35). Using this method, polymer prepared at —40° C melts at 73°C and is 38% crystalline. Polymer made at +40° C melts at 45°C and is about 12% crystalline. [Pg.542]

Phase equilibria of the isothiazole-water system have been investigated by differential thermal analysis (76BSF1043), and it has been established that a stable crystalline clathrate (isothiazole-34H20) forms below 0 °C. [Pg.144]

Multiblock polyethylene-polydimethylsiloxane copolymers were obtained by the reaction of silane terminated PDMS and hydroxyl terminated polyethylene oligomers in the presence of stannous octoate as the catalyst 254). The reactions were conducted in refluxing xylene for 24 hours. PDMS block size was kept constant at 3,200 g/mole, whereas polyethylene segment molecular weights were varied between 1,200 and 6,500 g/mole. Thermal analysis and dynamic mechanical studies of the copolymers showed the formation of two-phase structures with crystalline polyethylene segments. [Pg.45]

Recently we investigated ferromagnetic properties of CoPt bimetallic nanoparticles [232,233]. CoPt3 nanoparticles can be prepared by a two-step reduction using NaBH4 as a reductant. The bimetallic nanoparticles were characterized by thermogravimetry (TG) and differential thermal analysis (DTA), FT-IR, TEM) and XRD. Structural and spectroscopic studies showed that the bimetallic nanoparticles adopt an fee crystalline structure with an average particle size of 2.6 nm. SQUID studies revealed... [Pg.70]

In the broadest sense, thermal analysis (TA) measures physical changes in a material as a function of temperature. TA instruments measure variables in a sample such as heat flow, weight, dimensions, etc. A typical fingerprint of a compound might be the endothermic peak on a thermogram indicating a sample s crystalline melt. [Pg.599]

Differential Thermal Analysis (DTA). One of the characteristics of a rubber useful in tire rubber compounds is that it is amorphous at room temperature but readily undergoes strain induced crystallization. For this reason, copolymers were prepared in order to appropriately adjust the crystalline melt temperature. [Pg.82]

US patent 6,723,728, Polymorphic and other crystalline forms cis-FTC [106], The present invention relates to polymorphic and other crystalline forms of (—)-and ( )-cA-(4-amino-5-fluoro-l-(2-(hydroxymethyl)-l,3-oxathiolan-5-yl)-2(lH)-pyrimidinone, or FTC) [106]. Solid phases of (—)-cz>FTC that were designated as amorphous (—)-FTC, and Forms II and III were found to be distinguishable from Form I by X-ray powder diffraction, thermal analysis properties, and their methods of manufacture. A hydrated crystalline form of ( )-cA-FTC and a dehydrated form of the hydrate, were also disclosed, and can similarly be distinguished from other forms of FTC by X-ray powder diffraction, thermal properties, and their methods of manufacture. These FTC forms can be used in the manufacture of other forms of FTC, or as active ingredients in pharmaceutical compositions. Particularly preferred uses of these forms are in the treatment of HIV or hepatitis B. [Pg.278]

Concentration of an ethanolic solution of dimethylglyoxime, cobalt(n) chloride and benzotriazole results in deposition of crystalline complex 68. The product is stable at room temperature however, it slowly decomposes upon heating. Thermal analysis reveals that the compound releases first the chlorine atom and 50% of the benzotriazole content to form a new complex that is stable to 225 °C. Probably in this new form, the benzotriazole moiety coordinates two cobalt ions simultaneously. Further heating to 350 °C removes the benzotriazolyl moieties completely <2003JPY699>. The first step of decomposition can be summarized as follows ... [Pg.13]

The use of solid state NMR for the investigation of polymorphism is easily understood based on the following model. If a compound exists in two, true polymorphic forms, labeled as A and B, each crystalline form is conformationally different. This means for instance, that a carbon nucleus in form A may be situated in a slightly different molecular geometry compared with the same carbon nucleus in form B. Although the connectivity of the carbon nucleus is the same in each form, the local environment may be different. Since the local environment may be different, this leads to a different chemical shift interaction for each carbon, and ultimately, a different isotropic chemical shift for the same carbon atom in the two different polymorphic forms. If one is able to obtain pure material for the two forms, analysis and spectral assignment of the solid state NMR spectra of the two forms can lead to the origin of the conformational differences in the two polymorphs. Solid state NMR is thus an important tool in conjunction with thermal analysis, optical microscopy, infrared (IR) spectroscopy, and powder... [Pg.110]

XPD [18]. Similarly, mineral impurities in talc were analyzed by polarizing light microscopy, differential thermal analysis, and XPD [19]. It must be recognized, however, that small amounts of crystalline impurities (usually <0.5% w/w) may not be detected by XPD. In case of noncrystalline impurities, mrch higher concentrations may be nondetectable. [Pg.193]

For example, amorphous clarithromycin was prepared by grind and spray-drying processes, and XRPD was used to follow changes in crystallinity upon exposure to elevated temperature and relative humidity [59]. Exposure of either substance to a 40°C/82% RH environment for seven days led to the formation of the crystalline form, but the spray-dried material yielded more crystalline product than did the ground material. This finding, when supported with thermal analysis studies, led to the conclusion that the amorphous substances produced by the different processing methods were not equivalent. [Pg.217]

Figure shows the Differential thermal analysis curve for poly (ethylene terephthalate). The lower crystalline melting range in the specimen of figure below can be attributed to impurities present in the polymer. [Pg.87]

Bank and co-workers [19] have proposed using thermal analysis to measure other parameters for detecting local moisture content, changes in modulus and damping, and crystallinity in composite materials. [Pg.88]

The styrene content affects the crystallinity of ESI (131) for >50% styrene the copolymers are amorphous. As the styrene content is increased from 50 to 70% styrene the Tg increases from -15 °C to 20 °C. Low density foams were made (8) from a blend of 50% of various ESI polymers, 33% of EVA and 17% of azodicarbonamide blowing agent. Thermal analysis showed that the blends, with an ESI having approximately 70% styrene, had a Tg in the range 22 to 30 °C. Dynamic mechanical thermal analysis (DMTA) traces (see Section 5.1) show that these blends... [Pg.5]

A variety of techniques have been used to determine the extent of crystallinity in a polymer, including X-ray diffraction, density, IR, NMR, and heat of fusion [Sperling, 2001 Wunderlich, 1973], X-ray diffraction is the most direct method but requires the somewhat difficult separation of the crystalline and amorphous scattering envelops. The other methods are indirect methods but are easier to use since one need not be an expert in the field as with X-ray diffraction. Heat of fusion is probably the most often used method since reliable thermal analysis instruments are commercially available and easy to use [Bershtein and Egorov, 1994 Wendlandt, 1986], The difficulty in using thermal analysis (differential scanning calorimetry and differential thermal analysis) or any of the indirect methods is the uncertainty in the values of the quantity measured (e.g., the heat of fusion per gram of sample or density) for 0 and 100% crystalline samples since such samples seldom exist. The best technique is to calibrate the method with samples whose crystallinites have been determined by X-ray diffraction. [Pg.27]

The end product of the dehydroxylation of pure phases is, in all cases, hematite, but with lepidocrocite, maghemite occurs as an intermediate phase. The amount of water in stoichiometric FeOOH is 10.4 g kg , but adsorbed water may increase the overall amount released. Thermal dehydroxylation of the different forms of FeOOH (followed by DTA or TG) takes place at widely varying temperatures (140-500 °C) depending on the nature of the compound, its crystallinity, the extent of isomorphous substitution and any chemical impurities (see Fig. 7.18). Sometimes the conversion temperature is taken from thermal analysis data (e. g. DTA), but because of the dynamic nature of the thermoanalysis methods, the temperature of the endothermic peak is usually higher than the equilibrium temperature of conversion. [Pg.367]

The measurements of Young s modulus in dependence of the temperature (dynamic-mechanical measurements, see Sect. 2.3.5.2) and the differential thermal analysis (DTA or DSC) are the most frequently used methods for determination of the glass transition temperature. In Table 2.10 are listed and values for several amorphous and crystalline polymers. [Pg.120]


See other pages where Thermal analysis crystallinity is mentioned: [Pg.272]    [Pg.332]    [Pg.166]    [Pg.167]    [Pg.350]    [Pg.150]    [Pg.410]    [Pg.340]    [Pg.350]    [Pg.195]    [Pg.842]    [Pg.97]    [Pg.10]    [Pg.130]    [Pg.170]    [Pg.332]    [Pg.75]    [Pg.109]    [Pg.484]    [Pg.116]    [Pg.224]    [Pg.8]    [Pg.384]    [Pg.250]    [Pg.227]    [Pg.86]    [Pg.154]    [Pg.376]    [Pg.29]    [Pg.369]   
See also in sourсe #XX -- [ Pg.788 , Pg.789 ]




SEARCH



Crystallinity analysis

Crystallinity differential thermal analysis

Crystallinity, macromolecules, thermal analysis

© 2024 chempedia.info