Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The sample molecules

If the sample is placed in the path of the infrared beam, usually between the source and the monochromator, it will absorb a part of the photon energy having the same frequency as the vibrations of the sample molecule s atoms. The comparison of the source s emission spectrum with that obtained by transmission through the sample is the sample s transmittance spectrum. [Pg.57]

Nearly all these spectra have been recorded using 70-V electrons to bombard the sample molecules. [Pg.816]

If a sample is introduced as a solution into the middle of the start of the flame, the combination of high temperatures, energetic electrons, and ions breaks down the sample molecules into constituent atoms and their ions. These elemental ions and atoms emerge from the end of the flame. [Pg.395]

Once inside the hot plasma, which is at a temperature of about 8000 K and contains large numbers of energetic electrons and ions, the sample molecules are broken down into their constituent elements, which appear as ions. The ions are transported into a mass analyzer such as a quadrupole or a time-of-flight instrument for measurement of m/z values and ion abundances. [Pg.396]

The values of the time constants and are important in understanding both internal and overall motional behavior of the sample molecule. values are measured by the inversion recovery pulse sequence ... [Pg.403]

In its simplest form, a mass spectrometer is an instmment that measures the mass-to-charge ratios ml of ions formed when a sample is ionized by one of a number of different ionization methods (1). If some of the sample molecules are singly ionized and reach the ion detector without fragmenting, then the ml ratio of these ions gives a direct measurement of the molecular weight. The first instmment for positive ray analysis was built by Thompson (2) in 1913 to show the existence of isotopic forms of the stable elements. Later, mass spectrometers were used for precision measurements of ionic mass and abundances (3,4). [Pg.539]

Modern analytical pyrolysis has conventionally been canied out only by thermal energy to break some covalent bonds in the sample molecules at elevated temperatures to produce smaller and/or volatile fragments (pyrolyzates). On the other hand, the reactive pyrolysis in the presence of organic alkaline, such as tetramethylammonium hydroxide [(CH / NOH] (TMAH) has recently received much attention especially in the field of chai acterizing condensation polymers. [Pg.17]

This method of detection is at its most sensitive if the absorption maximum (A a,) of the sample molecule is exactly at the wavelength of the UV light employed for irradiation. The further lies from this the less radiation is absorbed and the lower the sensitivity of detection. If the compound does not absorb at the wavelength of radiation or if it possesses an absorption minimum just there then such components are not detected by this method. Figure 4C illustrates this with the sweeteners saccharin and dulcin as examples. [Pg.10]

In an ideal SEC separation, the mechanism is purely sieving, with no chemical interaction between the column matrix and the sample molecules. In practice, however, a small number of weakly charged groups on the surface of all TSK-GEL PW type packings can cause changes in elution order from that of an ideal system. Fortunately, the eluent composition can be varied greatly with TSK-GEL PW columns to be compatible with a wide range of neutral, polar, anionic, and cationic samples. Table 4.8 lists appropriate eluents for GFC of all polymer types on TSK-GEL PW type columns (11). [Pg.111]

The efficiency of the "D is partly a consequence of the zone refocusing mechanism, as depicted in Figure 8.7. Each time the solvent front traverses the stationary sample in multiple development it compresses the zone in the direction of development. The compression occurs because the mobile phase first contacts the bottom edge of the zone, where the sample molecules start to move forward before those... [Pg.178]

Does the reduction of the sample molecule lead to the formation of substances containing amino groups ... [Pg.30]

These reactions at particular functional groups of the sample molecule are closely related in an inverse sense with those reagents which bring their own functional group into the molecule. The numerous aldehyde — acid reactions are an example. Numerous monographs of such reactions are already included in Volume la. Their reac-... [Pg.33]

In contrast to straight phase or adsorption chromatography, partition chromatography involves the separation of sample molecules owing to their different partition coefficients between the liquid stationary and mobile phases. The liquid stationary phase is located in the pores of a sorbent, ideally only acting as a support, making no contribution to the retention of the sample molecules. [Pg.54]

Method development starts from an understanding of the physical and chemical properties of the sample molecule and/or impurities present. If the sample... [Pg.246]

Sample preparation for the common desorption/ionisation (DI) methods varies greatly. Films of solid inorganic or organic samples may be analysed with DI mass spectrometry, but sample preparation as a solution for LSIMS and FAB is far more common. The sample molecules are dissolved in a low-vapour-pressure liquid solvent - usually glycerol or nitrobenzyl alcohol. Other solvents have also been used for more specialised applications. Key requirements for the solvent matrix are sample solubility, low solvent volatility and muted acid - base or redox reactivity. In FAB and LSIMS, the special art of sample preparation in the selection of a solvent matrix, and then manipulation of the mass spectral data afterwards to minimise its contribution, still predominates. Incident particles in FAB and LSIMS are generated in filament ionisation sources or plasma discharge sources. [Pg.384]

This chapter deals mainly with (multi)hyphenated techniques comprising wet sample preparation steps (e.g. SFE, SPE) and/or separation techniques (GC, SFC, HPLC, SEC, TLC, CE). Other hyphenated techniques involve thermal-spectroscopic and gas or heat extraction methods (TG, TD, HS, Py, LD, etc.). Also, spectroscopic couplings (e.g. LIBS-LIF) are of interest. Hyphenation of UV spectroscopy and mass spectrometry forms the family of laser mass-spectrometric (LAMS) methods, such as REMPI-ToFMS and MALDI-ToFMS. In REMPI-ToFMS the connecting element between UV spectroscopy and mass spectrometry is laser-induced REMPI ionisation. An intermediate state of the molecule of interest is selectively excited by absorption of a laser photon (the wavelength of a tuneable laser is set in resonance with the transition). The excited molecules are subsequently ionised by absorption of an additional laser photon. Therefore the ionisation selectivity is introduced by the resonance absorption of the first photon, i.e. by UV spectroscopy. However, conventional UV spectra of polyatomic molecules exhibit relatively broad and continuous spectral features, allowing only a medium selectivity. Supersonic jet cooling of the sample molecules (to 5-50 K) reduces the line width of their... [Pg.428]


See other pages where The sample molecules is mentioned: [Pg.1331]    [Pg.93]    [Pg.94]    [Pg.134]    [Pg.135]    [Pg.135]    [Pg.402]    [Pg.403]    [Pg.249]    [Pg.272]    [Pg.212]    [Pg.41]    [Pg.41]    [Pg.45]    [Pg.14]    [Pg.270]    [Pg.4]    [Pg.481]    [Pg.860]    [Pg.1008]    [Pg.154]    [Pg.396]    [Pg.396]    [Pg.399]    [Pg.400]    [Pg.173]    [Pg.221]    [Pg.259]    [Pg.362]    [Pg.383]   


SEARCH



Sampling molecules

The Sample

© 2024 chempedia.info