Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The rate coefficient

This is the situation exploited by the so-called isolation method to detennine the order of the reaction with respect to each species (see chapter B2.1). It should be stressed that the rate coefficient k in (A3,4,10) depends upon the definition of the in the stoichiometric equation. It is a conventionally defined quantity to within multiplication of the stoichiometric equation by an arbitrary factor (similar to reaction enthalpy). [Pg.763]

A completely analogous derivation leads to the rate coefficient for bimolecular reactions, where dare partition fiinctions per unit volume. ... [Pg.780]

The exponential fiinction of the matrix can be evaluated tln-ough the power series expansion of exp(). c is the coliinm vector whose elements are the concentrations c.. The matrix elements of the rate coefficient matrix K are the first-order rate constants W.. The system is called closed if all reactions and back reactions are included. Then K is of rank N- 1 with positive eigenvalues, of which exactly one is zero. It corresponds to the equilibrium state, witii concentrations r detennined by the principle of microscopic reversibility ... [Pg.790]

As an example we take again the Lindemaim mechanism of imimolecular reactions. The system of differential equations is given by equation (A3.4.127T equation (A3.4.128 ) and equation (A3.4.129T The rate coefficient matrix is... [Pg.790]

Quack M 1984 On the mechanism of reversible unimolecular reactions and the canonical ( high pressure ) limit of the rate coefficient at low pressures Ber. Bunsenges. Phys. Chem. 88 94-100... [Pg.794]

According to Kramers model, for flat barrier tops associated with predominantly small barriers, the transition from the low- to the high-damping regime is expected to occur in low-density fluids. This expectation is home out by an extensively studied model reaction, the photoisomerization of tran.s-stilbene and similar compounds [70, 71] involving a small energy barrier in the first excited singlet state whose decay after photoexcitation is directly related to the rate coefficient of tran.s-c/.s-photoisomerization and can be conveniently measured by ultrafast laser spectroscopic teclmiques. [Pg.820]

For analysing equilibrium solvent effects on reaction rates it is connnon to use the thennodynamic fomuilation of TST and to relate observed solvent-mduced changes in the rate coefficient to variations in Gibbs free-energy differences between solvated reactant and transition states with respect to some reference state. Starting from the simple one-dimensional expression for the TST rate coefficient of a unimolecular reaction a— r... [Pg.833]

There is one important caveat to consider before one starts to interpret activation volumes in temis of changes of structure and solvation during the reaction the pressure dependence of the rate coefficient may also be caused by transport or dynamic effects, as solvent viscosity, diffiision coefficients and relaxation times may also change with pressure [2]. Examples will be given in subsequent sections. [Pg.841]

If Other fall-off broadening factors arising m unimolecular rate theory can be neglected, the overall dependence of the rate coefficient on pressure or, equivalently, solvent density may be represented by the expression [1, 2]... [Pg.848]

Multidimensionality may also manifest itself in the rate coefficient as a consequence of anisotropy of the friction coefficient [M]- Weak friction transverse to the minimum energy reaction path causes a significant reduction of the effective friction and leads to a much weaker dependence of the rate constant on solvent viscosity. These conclusions based on two-dimensional models also have been shown to hold for the general multidimensional case [M, 59, and 61]. [Pg.851]

From these equations one also finds the rate coefficient matrix for themial radiative transitions including absorption, induced and spontaneous emission in a themial radiation field following Planck s law [35] ... [Pg.1048]

The master equation treatment of energy transfer in even fairly complex reaction systems is now well established and fairly standard [ ]. However, the rate coefficients kjj or the individual energy transfer processes must be established and we shall discuss some aspects of this matter in tire following section. [Pg.1053]

The rate coefficient for elastic scattering between two species with non-isothennal Maxwellian distributions is then... [Pg.2009]

Collisional ionization can play an important role in plasmas, flames and atmospheric and interstellar physics and chemistry. Models of these phenomena depend critically on the accurate detennination of absolute cross sections and rate coefficients. The rate coefficient is the quantity closest to what an experiment actually measures and can be regarded as the cross section averaged over the collision velocity distribution. [Pg.2476]

The velocity distribution/(v) depends on the conditions of the experiment. In cell and trap experiments it is usually a Maxwell-Boltzmann distribution at some well defined temperature, but /(v) in atomic beam experiments, arising from optical excitation velocity selection, deviates radically from the nonnal thennal distribution [471. The actual signal count rate, relates to the rate coefficient through... [Pg.2476]

In the original Eyring version of transition state theory (TST), the rate coefficient krate is then given by ... [Pg.514]

The nitric acid used in this work contained 10% of water, which introduced a considerable proportion of acetic acid into the medium. Further dilution of the solvent wnth acetic acid up to a concentration of 50 moles % had no effect on the rate, but the addition of yet more acetic acid decreased the rate, and in the absence of acetic anhydride there was no observed reaction. It was supposed from these results that the adventitious acetic acid would have no effect. The rate coefficients of the nitration diminished rapidly with time in one experiment the value of k was reduced by a factor of 2 in i h. Corrected values were obtained by extrapolation to zero time. The author ascribed the decrease to the conversion of acetyl nitrate into tetranitromethane, but this conversion cannot be the explanation because independent studies agree in concluding that it is too slow ( 5.3.1). [Pg.86]

Chain transfer to monomer is the main reaction controlling molecular weight and molecular weight distribution. The chain-transfer constant to monomer, C, is the ratio of the rate coefficient for transfer to monomer to that of chain propagation. This constant has a value of 6.25 x lO " at 30°C and 2.38 x 10 at 70°C and a general expression of 5.78 30°C, chain transfer to monomer happens once in every 1600 monomer... [Pg.501]

Since the quantity D bPt is known to be relatively independent of the pressure, it follows that the rate coefficients fcc,. nd kcpryEM... [Pg.607]

The use of the rate coefficient /cl and the driving force (x, — x)/xbm is behevedto be appropriate. For many practical situations the hquid-phase solute concentrations are low, thus making this assumption unimportant. [Pg.615]

First-order and pseudo-first-order reactions are represented by the upper curve in Fig. 14-14. We note that for first-order reactions when the Hatta number is larger than about 3, the rate coefficient k can be computed by the formula... [Pg.1367]

Example 8 Estimation of Rate Coejficient Estimate the rate coefficient for flow of a 0.01-M water solution of NaCl through a bed of cation exchange particles in hydrogen form with e = 0.4. The superficial velocity is 0.2 cm/s and the temperature is 25 C. The particles are 600 im in diameter, and the diffusion coefficient of sodium ion is 1.2 X 10 cmVs in solution and 9.4 X 10 cmVs inside the particles (of. Table 16-8). The bulk density is 0.7 g dry resin/cnd of bed, and the capacity of the resin is 4.9 mequiv/g dry resin. The mass action eqiiihbrium constant is 1.5. [Pg.1516]

The available data are arranged by ring and ring-position in Tables II-VIII. The rate coefficients have been recalculated to the same units, where necessary the fact that different temperatures of reference were used in the publications should be noted. The temperatures used experimentally for a given substrate were chosen for a rate of reaction which was convenient to measure, and then for comparison, rate constants were calculated at a common temperature by means of the standard equations (cf. discussions by Ingold and by... [Pg.269]


See other pages where The rate coefficient is mentioned: [Pg.825]    [Pg.833]    [Pg.846]    [Pg.848]    [Pg.848]    [Pg.851]    [Pg.852]    [Pg.854]    [Pg.857]    [Pg.858]    [Pg.858]    [Pg.860]    [Pg.1080]    [Pg.1102]    [Pg.1103]    [Pg.2011]    [Pg.2476]    [Pg.261]    [Pg.607]    [Pg.610]    [Pg.1515]    [Pg.1516]    [Pg.1516]    [Pg.424]    [Pg.440]    [Pg.165]    [Pg.778]   


SEARCH



Rate coefficient

© 2024 chempedia.info