Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Net Effect

Suppose, for example, a reaction product is formed in which the nuclei have a polarized spin state distribution, with larger than Boltzmann population in the lower state. This would make the absorption process more favorable, and the resulting signal intensity would be greater than normal. This situation is referred to as enhanced absorption, or an A net effect. On the other hand, suppose for some reason the spin state distribution were polarized in the opposite way, with more nuclei in the upper state. Now, not only is absorption [Pg.183]

As with the net E and A effects, the multiplet effects can also be rationalized on the basis of nonequilibrium spin state populations. Recall the AB spin system we discussed in [Pg.183]

ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY AND CHEMICALLY INDUCED DYNAMIC NUCLEAR POLARIZATION [Pg.184]


Direct dissociation reactions are affected by surface temperature largely tlirough the motion of the substrate atoms [72]. Motion of the surface atom towards the incoming molecule mcreases the likelihood of (activated) dissociation, while motion away decreases the dissociation probability. For low dissociation probabilities, the net effect is an enliancement of the dissociation by increasing surface temperature, as observed in the system 02/Pt 100]-hex-R0.7° [73]. [Pg.912]

C3.6.13 where large diffusion fluxes are indicated by —> and smaller diffusion fluxes by —+. For tire part of tire B front tliat protmdes into tire A region, fast diffusion of B leads to dispersal of B and suppresses tire autocatalytic reaction tliat requires two molecules of B. The front will have difficulty advancing here. In tire region where A protmdes into B, A will react leading to advancement of tire front. The net effect is to remove any initial nonplanarity and give rise to a planar front. [Pg.3070]

Finally, following Mead and Truhlar [10], it may be seen that an interchange of A and B is equivalent to a sign reversal of <() followed by a rotation perpendicular to the AB bond, under the latter of which Aab) is invariant and Fab) changes sign. The net effect is therefore to induce the tiansitions... [Pg.31]

Figure 2. The space-fixed (XYZ) and body-fixed xyz) frames in a diatomic molecule AB. The nuclei are at A and B, and 1 represents the location of a typical electron. The results of inversions of their SF coordinates are A A, B B, and 1 1, respectively. After one executes only the reinversion of the electronic SF coordinates, one obtains 1 — 1. The net effect is then the exchange of the SF nuclear coordinates alone. Figure 2. The space-fixed (XYZ) and body-fixed xyz) frames in a diatomic molecule AB. The nuclei are at A and B, and 1 represents the location of a typical electron. The results of inversions of their SF coordinates are A A, B B, and 1 1, respectively. After one executes only the reinversion of the electronic SF coordinates, one obtains 1 — 1. The net effect is then the exchange of the SF nuclear coordinates alone.
We now consider planar molecules. The electronic wave function is expressed with respect to molecule-fixed axes, which we can take to be the abc principal axes of ineitia, namely, by taking the coordinates (x,y,z) in Figure 1 coincided with the principal axes a,b,c). In order to detemiine the parity of the molecule through inversions in SF, we first rotate all the electrons and nuclei by 180° about the c axis (which is peipendicular to the molecular plane) and then reflect all the electrons in the molecular ab plane. The net effect is the inversion of all particles in SF. The first step has no effect on both the electronic and nuclear molecule-fixed coordinates, and has no effect on the electronic wave functions. The second step is a reflection of electronic spatial coordinates in the molecular plane. Note that such a plane is a symmetry plane and the eigenvalues of the corresponding operator then detemiine the parity of the electronic wave function. [Pg.573]

The net effect of the sequence protect-mtrate-deprotect is the same as if the substrate had been nitrated directly Because direct nitration is impossible however the indirect route IS the only practical method... [Pg.941]

Where more than one of the structural influences on a particular carbonyl group is operating, the net effect is usually close to additive. [Pg.742]

In the derivation of both Eqs. (9.4) and (9.9), the disturbance of the flow streamlines is assumed to be produced by a single particle. This is the origin of the limitation to dilute solutions in the Einstein theory, where the net effect of an array of spheres is treated as the sum of the individual nonoverlapping disturbances. When more than one sphere is involved, the same limitation applies to Stokes law also. In both cases contributions from the walls of the container are also assumed to be absent. [Pg.590]

The net effect of this sequence is the destmction of 2 molecules of as the one is lost in NO2 formation and the O of equation 26 would have combined with O2 to form the other. In addition, the NO acts as a catalyst. It is not consumed, and therefore can participate in the reaction sequence many times. [Pg.380]

The compound R X is a chain-transfer agent, with X usually H or Cl. The net effect of chain transfer is to kill a growing chain and start a new one in its place, thus shortening the chains. Mercaptan chain-transfer agents ate often used to limit molecular weight, but under appropriate conditions, almost anything in the reaction mass (solvent, dead polymer, initiator) can act as a chain-transfer agent to a certain extent. [Pg.436]

Polyall lene Oxide Block Copolymers. The higher alkylene oxides derived from propjiene, butylene, styrene (qv), and cyclohexene react with active oxygens in a manner analogous to the reaction of ethylene oxide. Because the hydrophilic oxygen constitutes a smaller proportion of these molecules, the net effect is that the oxides, unlike ethylene oxide, are hydrophobic. The higher oxides are not used commercially as surfactant raw materials except for minor quantities that are employed as chain terminators in polyoxyethylene surfactants to lower the foaming tendency. The hydrophobic nature of propylene oxide units, —CH(CH2)CH20—, has been utilized in several ways in the manufacture of surfactants. Manufacture, properties, and uses of poly(oxyethylene- (9-oxypropylene) have been reviewed (98). [Pg.254]

Synergism is appHed to a situation where the effect of two or more chemicals that have common mechanism of toxicity, given together, is significantly greater than that expected from considerations on the toxicity of each material alone. This differs from potentiation in that both materials contribute to the toxic injury, and the net effect is always greater than additive. [Pg.230]

Glass IB Antiarrhythmic Agents. Class IB antiarrhythmic agents produce less inhibition of the inward sodium current than Class lA agents. In normal myocardial tissue, phase 0 may be unaffected or minimally depressed. However, in ischemic or infarcted tissue, phase 0 is depressed. Myocardial tissue exposed to Class IB agents exhibits decreased automaticity, shortened action potential duration, ie, shortened repolarization, and shortened refractory period. Excitability of the myocardium is not affected and conduction velocity is increased or not modified. The refractory period is shortened less than its action potential duration, thus the ratio of refractory period to action potential duration is increased by these agents. The net effect is increased refractoriness. The PR and QT intervals of the ECG are shortened and the QRS interval is unchanged (1,2). [Pg.113]

Two types of interac tion, competition, and predation are so important that worthwhile insight comes from considering mathematical formulations. Assuming that specific growth-rate coefficients are different, no steady state can be reached in a well-mixed continuous culture with both types present because, if one were at steady state with [L = D, the other would have [L unequal to D and a rate of change unequal to zero. The net effect is that the faster-growing type takes over while the other dechnes to zero. In real systems—even those that approximate well-mixed continuous cultures—there may be profound... [Pg.2147]

G will generate an excess power compared to Gy. Therefore while G will operate as a generator, Gy. receiving power from G, will operate as a synchronous motor. Since G is overloaded compared to Cy. it will tend to retard, and Gy, receiving power from G, will tend to accelerate. The net effect would be that both generators will tend to synchronize on their own once again. [Pg.515]

For areas where cooling water is either scarce or not available, direct liquid injection may be a possibility. The liquid coolant should be injected near the discharge end of the compressor to minimize lubricant dilution. Alternatively, the liquid can be flashed in a separate exchanger and used to cool the lubricant. While the cooling may appear to decrease the power to the compressor, the net effect is an increase in the power due to the additional weight flow of the extra refrigerant needed to perform the cooling. [Pg.111]

Inclusion of double bonds will stiffen the chain at the point of inclusion but at the same time may increase the flexibility of adjacent bonds. The net effect may therefore be to reduce the glass transition temperature and this appears to occur in 1,4-polybutadiene when compared with polyethylene. [Pg.62]

The ability to promote /S elimination and the electron-donor capacity of the /3-metalloid substituents can be exploited in a very useful way in synthetic chemistry. Vinylstannanes and vinylsilanes react readily with electrophiles. The resulting intermediates then undergo elimination of the stannyl or silyl substituent, so that the net effect is replacement of the stannyl or silyl group by the electrophile. An example is the replacement of a trimethylsilyl substituent by an acetyl group by reaction with acetyl chloride. [Pg.396]

The most advanced MO and DFT calculations support the idea of an aromatic transition state. The net effect on reaction rate of any substituent is determined by whether it stabilizes the transition state or the ground state more effectively. The aromatic concept of the transition state predicts Aat it would be stabilized by substituents at all positions, and this is true for phenyl substituents, as shown in Table 11.2. [Pg.627]


See other pages where The Net Effect is mentioned: [Pg.194]    [Pg.1559]    [Pg.1597]    [Pg.1601]    [Pg.1607]    [Pg.572]    [Pg.579]    [Pg.274]    [Pg.274]    [Pg.142]    [Pg.524]    [Pg.29]    [Pg.380]    [Pg.420]    [Pg.404]    [Pg.405]    [Pg.35]    [Pg.122]    [Pg.419]    [Pg.146]    [Pg.233]    [Pg.21]    [Pg.27]    [Pg.12]    [Pg.275]    [Pg.516]    [Pg.519]    [Pg.400]    [Pg.251]    [Pg.466]    [Pg.221]    [Pg.141]   


SEARCH



NET EFFECT ON THE ENVIRONMENT

Net effect

The Effect of Off-Resonance Pulses on Net Magnetization

© 2024 chempedia.info