Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The intrinsic pathway

Factor IX. This factor is dependent on the presence of vitamin K for its activity as a biologicaUy functional procoagulant glycoprotein. Factor IX is converted to its active form by XIa in the classic scheme of the intrinsic pathway. However, it can also be activated via interaction with Factor Xa or the complex Factor III plus Factor VII in the presence of calcium. [Pg.174]

Two main apoptotic pathways have been identified in mammalian cells the extrinsic pathway that is activated by the binding of ligands to cell-surface death receptors, and the intrinsic pathway that involves the mitochondrial release of cytochrome cP The activation of extrinsic and intrinsic apoptotic pathways promotes the cleavage into the active form of the pro-caspase-8 and pro-caspase-9, respectively, that mainly determine the activation of effector caspase-3. ° The intrinsic pathway is the main apoptotic pathway activated by chemotherapeutic drugs, while the cytotoxic drug-induced activation of the extrinsic pathway is a more controversial issue. ... [Pg.359]

Initiation of the fibrin clot in response to tissue injury is carried out by the extrinsic pathway. How the intrinsic pathway is activated in vivo is unclear, but it involves a negatively charged surface. The intrinsic and extrinsic pathways converge in a final common path-vray involving the activation of prothrombin to thrombin and the thrombin-catalyzed cleavage of fibrinogen to form the fibrin clot. The intrinsic, extrinsic, and final common pathways are complex and involve many different proteins (Figure 51-1 and Table 51-1). In... [Pg.598]

Figure 51-1. The pathways of blood coagulation. The intrinsic and extrinsic pathways are indicated. The events depicted below factor Xa are designated the final common pathway, culminating in the formation of cross-linked fibrin. New observations (dotted arrow) include the finding that complexes of tissue factor and factor Vila activate not only factor X (in the classic extrinsic pathway) but also factor IX in the intrinsic pathway, in addition, thrombin and factor Xa feedback-activate at the two sites indicated (dashed arrows). (PK, prekallikrein HK, HMW kininogen PL, phospholipids.) (Reproduced, with permission, from Roberts HR, Lozier JN New perspectives on the coagulation cascade. Hosp Pract [Off Ed] 1992Jan 27 97.)... Figure 51-1. The pathways of blood coagulation. The intrinsic and extrinsic pathways are indicated. The events depicted below factor Xa are designated the final common pathway, culminating in the formation of cross-linked fibrin. New observations (dotted arrow) include the finding that complexes of tissue factor and factor Vila activate not only factor X (in the classic extrinsic pathway) but also factor IX in the intrinsic pathway, in addition, thrombin and factor Xa feedback-activate at the two sites indicated (dashed arrows). (PK, prekallikrein HK, HMW kininogen PL, phospholipids.) (Reproduced, with permission, from Roberts HR, Lozier JN New perspectives on the coagulation cascade. Hosp Pract [Off Ed] 1992Jan 27 97.)...
The intrinsic pathway (Figure 51-1) involves factors XII, XI, IX, VIII, and X as well as prekallikrein, high-molecular-weight (HMW) kininogen, Ca, and platelet phospholipids. It results in the production of factor Xa (by convention, activated clotting factors are referred to by use of the suffix a). [Pg.600]

A number of laboratory tests are available to measure the phases of hemostasis described above. The tests include platelet count, bleeding time, activated partial thromboplastin time (aPTT or PTT), prothrombin time (PT), thrombin time (TT), concentration of fibrinogen, fibrin clot stabifity, and measurement of fibrin degradation products. The platelet count quantitates the number of platelets, and the bleeding time is an overall test of platelet function. aPTT is a measure of the intrinsic pathway and PT of the extrinsic pathway. PT is used to measure the effectiveness of oral anticoagulants such as warfarin, and aPTT is used to monitor heparin therapy. The reader is referred to a textbook of hematology for a discussion of these tests. [Pg.608]

The initial steps of the intrinsic pathway are somewhat more complicated. This system requires the presence of clotting factors VIII, IX, XI and XII, all of which, except for factor VIII, are endo-acting proteases. As in the case of the extrinsic pathway, the intrinsic pathway is triggered upon exposure of the clotting factors to proteins present on the surface of body tissue exposed by vascular injury. These protein binding/activation sites probably include collagen. [Pg.331]

The intrinsic pathway appears to be initiated when factor XII is activated by contact with surface proteins exposed at the site of damage. High molecular mass kininogen also appears to form part of this initial activating complex (Figure 12.2). [Pg.331]

Factor XIa, in turn, activates factor IX. Factor IXa then promotes the activation of factor X, but only when it (i.e. IXa) is associated with factor Villa. Factor Villa is formed by the direct action of thrombin on factor VIII. The thrombin will be present at this stage because of prior activation of the intrinsic pathway. [Pg.332]

In Chapter 3 we described the intrinsic pathways of de-excitation of a molecule M the sum fey of the rate constants for these processes is equal to the reciprocal of the excited-state lifetime to1 ... [Pg.72]

Figure 14-8. Overview of pathways that regulate programmed cell death. Apoptosis may occur in response to signaling through either the extrinsic pathway or the intrinsic pathway. In each case, proteolytic cleavage activates an initiator caspase, caspase 8 or 9, either of which can cleave an effector caspase such as caspase 3. Apaf-1 is part of a large complex called the apoptosome that mediates the intrinsic pathway. Binding of an extracellular death ligand to its cell-surface receptor activates the extrinsic pathway. Figure 14-8. Overview of pathways that regulate programmed cell death. Apoptosis may occur in response to signaling through either the extrinsic pathway or the intrinsic pathway. In each case, proteolytic cleavage activates an initiator caspase, caspase 8 or 9, either of which can cleave an effector caspase such as caspase 3. Apaf-1 is part of a large complex called the apoptosome that mediates the intrinsic pathway. Binding of an extracellular death ligand to its cell-surface receptor activates the extrinsic pathway.
The intrinsic pathway responds to stress, usually resulting in the cell s inability to repair extensive DNA damage, sparking a decision to commit suicide. [Pg.215]

From a series of sulfated bis-aldonic acid amides with different alkyl spacer length, compound 34 was chosen for further evaluation as an antithrombotic. This compound was synthetically available in four steps from lactobionic acid (Scheme 7). Compound 34 had relatively high APTT values (42 U/mg) and antithrombotic activity, both of which decreased gradually when the number of methylene groups in the spacer was increased. It was thought to act via HCII and multiple sites in the intrinsic pathway of the coagulation cascade [64]. [Pg.236]

Extrinsic pathway This pathway has fewer steps than the intrinsic pathway and occurs rapidly, within a matter of seconds if the trauma is severe. It is called the extrinsic pathway because a protein tissue factor, also called thromboplastin or coagulation factor III, takes into the blood stream from outside and initiates the formation of prothrombinase. Tissue factor is released from the surface of the damaged cells. It activates factor VII. Factor VII combines with factor X, activating it. Factor X in the presence of Ca combines with factor V to give active enzyme prothrombinase. [Pg.240]

Hemostasis begins with the formation of the platelet plug, followed by activation of the clotting cascade, and propagation of the clot. One of the major multicomponent complexes in the coagulation cascade consists of activated factor IX (factor IXa) as the protease, activated factor VIII (factor Villa), calcium, and phospholipids as the cofactors, and factor X as the substrate. Factor IXa can be generated by either factor Xa activation of the intrinsic pathway or by the tissue factor/factor Vila complex. [Pg.135]

Fig. 1. Proposed mechanism of action of rituximab associated with the apoptosis pathway. Binding of rituximab with the CD20 antigen up-regulates the production of interleukin-10 (IL-10). The IL-10 autocrine loop down-regulates the expression of the bcl-2 protein, which inhibits the intrinsic pathway (or mitochondrial mediated pathway) of apoptosis. The mitochondrial pathway is induced by intracellular stress signals. The translocation of the bcl-2 protein into the mitochondria leads to the activation of caspase 9 via release of cytochrome c and apoptotic protease-activating factor 1. The other pathway, the extrinsic pathway (or death receptor mediated pathway) activates caspase 8. Subsequently, caspase 8 or 9 activates caspase 3, leading to programmed cell death (apoptosis). Fig. 1. Proposed mechanism of action of rituximab associated with the apoptosis pathway. Binding of rituximab with the CD20 antigen up-regulates the production of interleukin-10 (IL-10). The IL-10 autocrine loop down-regulates the expression of the bcl-2 protein, which inhibits the intrinsic pathway (or mitochondrial mediated pathway) of apoptosis. The mitochondrial pathway is induced by intracellular stress signals. The translocation of the bcl-2 protein into the mitochondria leads to the activation of caspase 9 via release of cytochrome c and apoptotic protease-activating factor 1. The other pathway, the extrinsic pathway (or death receptor mediated pathway) activates caspase 8. Subsequently, caspase 8 or 9 activates caspase 3, leading to programmed cell death (apoptosis).
Goyeneche AA, Harmon JM, Telleria CM (2006) Cell death induced by serum deprivation in luteal cells involves the intrinsic pathway of apoptosis. Reproduction 131 103-111 Gray MW, Burger G, Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol 2 1018.1-1081.5... [Pg.263]

Why do we have the intrinsic pathway when the tissue factor pathway provides rapid clot formation The answer seems to be that the tissue factor pathway is needed immediately after injury but that it is turned off quickly by the anticoagulation systems of the body. As a result the protease plasmin begins to dissolve (lyse) the clot within a few hours. The intrinsic pathway is apparently needed to maintain the clot for a longer period.514... [Pg.634]


See other pages where The intrinsic pathway is mentioned: [Pg.174]    [Pg.174]    [Pg.465]    [Pg.318]    [Pg.377]    [Pg.676]    [Pg.418]    [Pg.600]    [Pg.600]    [Pg.601]    [Pg.601]    [Pg.76]    [Pg.104]    [Pg.176]    [Pg.64]    [Pg.370]    [Pg.371]    [Pg.259]    [Pg.206]    [Pg.756]    [Pg.61]    [Pg.243]    [Pg.174]    [Pg.174]    [Pg.632]    [Pg.3]    [Pg.3]    [Pg.5]   
See also in sourсe #XX -- [ Pg.856 ]




SEARCH



Intrinsic pathway

© 2024 chempedia.info