Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The degree of crystallinity

However the crystallinity is determined, it is important to distinguish between two slightly different measures, the volume crystallinity, x , and the mass crystallinity, Xm- If is the volume of crystalline material and Fa is the volume of non-crystalline (amorphous) material within a sample, then Xv = -f Fc) and, in a similar way, Xm = MJ M + Me), where [Pg.118]

The values obtained for Xm Xv by the methods described below vary considerably from polymer to polymer. For a given polymer they can depend markedly on the method of solidification and subsequent heat treatment (annealing). For a nearly atactic vinyl polymer like commercial [Pg.118]

PVC the range of values is about 0%-10%, whereas for polyethylenes of various types Xm and Xv can range from about 40% to 70% or even wider for specially prepared samples. [Pg.119]


Because x-rays are particularly penetrating, they are very usefiil in probing solids, but are not as well suited for the analysis of surfaces. X-ray diffraction (XRD) methods are nevertheless used routinely in the characterization of powders and of supported catalysts to extract infomration about the degree of crystallinity and the nature and crystallographic phases of oxides, nitrides and carbides [, ]. Particle size and dispersion data are often acquired with XRD as well. [Pg.1791]

Ellipsometry measurements can provide infomiation about the thickness, microroughness and dielectric ftinction of thin films. It can also provide infomiation on the depth profile of multilayer stmctiires non-destmctively, including the thickness, the composition and the degree of crystallinity of each layer [39]. The measurement of the various components of a complex multilayered film is illustrated m figure Bl.26.17 [40]. [Pg.1887]

As before, this quantity in relation to the degree of crystallinity is given by Eq. (4.22), so equating the latter to Eq. (4.27) gives... [Pg.223]

Density, mechanical, and thermal properties are significantly affected by the degree of crystallinity. These properties can be used to experimentally estimate the percent crystallinity, although no measure is completely adequate (48). The crystalline density of PET can be calculated theoretically from the crystalline stmcture to be 1.455 g/cm. The density of amorphous PET is estimated to be 1.33 g/cm as determined experimentally using rapidly quenched polymer. Assuming the fiber is composed of only perfect crystals or amorphous material, the percent crystallinity can be estimated and correlated to other properties. [Pg.326]

Poly(vinyl fluoride) [24981-14-4] (PVF) is a semicrystaltiae polymer with a planar, zig-zag configuration (50). The degree of crystallinity can vary significantly from 20—60% (51) and is thought to be primarily a function of defect stmctures. Wide-line nmr and x-ray diffraction studies show the unit cell to contain two monomer units and have the dimensions of a = 0.857 nm, b = 0.495 nm, and c = 0.252 nm (52). Similarity to the phase I crystal form of poly (vinytidene fluoride) suggests an orthorhombic crystal (53). [Pg.379]

The ease of sample handling makes Raman spectroscopy increasingly preferred. Like infrared spectroscopy, Raman scattering can be used to identify functional groups commonly found in polymers, including aromaticity, double bonds, and C bond H stretches. More commonly, the Raman spectmm is used to characterize the degree of crystallinity or the orientation of the polymer chains in such stmctures as tubes, fibers (qv), sheets, powders, and films... [Pg.214]

Tensile Properties. Tensile properties of nylon-6 and nylon-6,6 yams shown in Table 1 are a function of polymer molecular weight, fiber spinning speed, quenching rate, and draw ratio. The degree of crystallinity and crystal and amorphous orientation obtained by modifying elements of the melt-spinning process have been related to the tenacity of nylon fiber (23,27). [Pg.247]

It must be kept in mind that mechanical properties are influenced by factors other than the degree of crystallinity (molecular weight, in particular). [Pg.434]

An important chemical finishing process for cotton fabrics is that of mercerization, which improves strength, luster, and dye receptivity. Mercerization iavolves brief exposure of the fabric under tension to concentrated (20—25 wt %) NaOH solution (14). In this treatment, the cotton fibers become more circular ia cross-section and smoother ia surface appearance, which iacreases their luster. At the molecular level, mercerization causes a decrease ia the degree of crystallinity and a transformation of the cellulose crystal form. These fine stmctural changes iacrease the moisture and dye absorption properties of the fiber. Biopolishing is a relatively new treatment of cotton fabrics, involving ceUulase enzymes, to produce special surface effects (15). [Pg.441]

Crystallization and Melting Point. The abihty of PVA to crystallize is the single most important physical property of PVA as it controls water solubiUty, water sensitivity, tensile strength, oxygen barrier properties, and thermoplastic properties. Thus, this feature has been and continues to be a focal point of academic and industrial research (9—50). The degree of crystallinity as measured by x-ray diffraction can be directly correlated to the density of the material or the swelling characteristic of the insoluble part (Fig. 2). [Pg.476]

Syndiotactic Polybutadiene. Syndiotactic polybutadiene is a unique material that combines the properties of plastic and mbber. It melts at high (150—220°C) temperatures, depending on the degree of crystallinity in the sample, and it can be molded into thin films that are flexible and have high elongation. The unique feature of this plastic-like material is that it can be blended with natural mbber. 1,4-Polybutadiene and the resulting blends exhibit a compatible formulation that combines the properties of plastic and mbber. [Pg.530]

Thin films of metals, alloys and compounds of a few micrometres diickness, which play an important part in microelectronics, can be prepared by die condensation of atomic species on an inert substrate from a gaseous phase. The source of die atoms is, in die simplest circumstances, a sample of die collision-free evaporated beam originating from an elemental substance, or a number of elementary substances, which is formed in vacuum. The condensing surface is selected and held at a pre-determined temperature, so as to affect die crystallographic form of die condensate. If diis surface is at room teiiiperamre, a polycrystalline film is usually formed. As die temperature of die surface is increased die deposit crystal size increases, and can be made practically monocrystalline at elevated temperatures. The degree of crystallinity which has been achieved can be determined by electron diffraction, while odier properties such as surface morphology and dislocation sttiicmre can be established by electron microscopy. [Pg.3]

The greater the degree of crystallinity the less the water absorption and hence the less will be the effect of humidity on the properties of the polymer. The degree of crystallinity also has an effect on electrical and mechanical properties. In particular high crystallinity leads to high abrasion resistance. [Pg.490]

The simplest model is the lattice-gas or Ising model. The whole space is divided into a lattice of N sites, and on each site two different states are possible a crystalline state denoted by the variable 5, = 1 and a gaseous state by Sj = -. The variable s denotes the degree of crystalline order. The cohesion of nearest-neighboring solid atoms leads to the following interaction energy... [Pg.858]

There are three major measurements used in judging TPU as a polymeric plasticizer for PVC the glass transition temperature (Tg), the compatibility with PVC, and the degree of crystallinity. [Pg.139]

Another fact that affects the properties of the blends is the degree of crystallinity of TPU. TPUs with a high degree of crystallinity cannot serve as plasticizer for PVC. [Pg.139]

Solid-state C NMR techniques have been applied to the characterization of the different phases of several polybibenzoates [25,30], including P7MB, PDTMB and PTEB. The last two polymers offer the advantage of the stability of the mesophase at room temperature. The spectra corresponding to the pure mesophase of these samples only exhibited a broad component, while the spectra of the annealed samples were separated into two components crystal and noncrystal. The shapes of the mesophase and the noncrystal components are very similar, and only modest variations in the relaxation times were observed between these two components. The degree of crystallinity of these samples was determined... [Pg.390]


See other pages where The degree of crystallinity is mentioned: [Pg.580]    [Pg.199]    [Pg.203]    [Pg.272]    [Pg.354]    [Pg.380]    [Pg.406]    [Pg.220]    [Pg.221]    [Pg.267]    [Pg.298]    [Pg.299]    [Pg.410]    [Pg.434]    [Pg.133]    [Pg.482]    [Pg.1]    [Pg.240]    [Pg.242]    [Pg.205]    [Pg.205]    [Pg.395]    [Pg.364]    [Pg.273]    [Pg.225]    [Pg.75]    [Pg.215]    [Pg.366]    [Pg.591]    [Pg.280]    [Pg.310]    [Pg.511]    [Pg.511]    [Pg.843]   


SEARCH



Crystallinity degree

© 2024 chempedia.info