Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Baylis-Hillman Reaction

In a representative example of on-line monitoring the Baylis-Hillman reaction was studied by ESI-MS in both the positive and negative ion mode. The reactions were [Pg.166]

The Baylis-Hillman Reaction Co-Catalyzed by Ionic Liquids [Pg.167]


Apart from the thoroughly studied aqueous Diels-Alder reaction, a limited number of other transformations have been reported to benefit considerably from the use of water. These include the aldol condensation , the benzoin condensation , the Baylis-Hillman reaction (tertiary-amine catalysed coupling of aldehydes with acrylic acid derivatives) and pericyclic reactions like the 1,3-dipolar cycloaddition and the Qaisen rearrangement (see below). These reactions have one thing in common a negative volume of activation. This observation has tempted many authors to propose hydrophobic effects as primary cause of ftie observed rate enhancements. [Pg.27]

An alkene activated by an electron-withdrawing group—often an acrylic ester 2 is used—can react with an aldehyde or ketone 1 in the presence of catalytic amounts of a tertiary amine, to yield an a-hydroxyalkylated product. This reaction, known as the Baylis-Hillman reaction, leads to the formation of useful multifunctional products, e.g. o -methylene-/3-hydroxy carbonyl compounds 3 with a chiral carbon center and various options for consecutive reactions. [Pg.28]

Together with a shift of the proton from the a-carbon to the alkoxide oxygen, the tertiary amine is eliminated from the addition product to yield the unsaturated product 3. Early examples of the Baylis-Hillman reaction posed the problem of low conversions and slow reaction kinetics, which could not be improved with the use of simple tertiary amines. The search for catalytically active substances led to more properly adjusted, often highly specific compounds, with shorter reaction times." Suitable catalysts are, for example, the nucleophilic, sterically less hindered bases diazabicyclo[2.2.2]octane (DABCO) 6, quinuclidin-3-one 7 and quinuclidin-3-ol (3-QDL) 8. The latter compound can stabilize the zwitterionic intermediate through hydrogen bonding. ... [Pg.29]

An intramolecular variant of the Baylis-Hillman reaction is also possible, and may be used for the construction of functionalized ring systems, e.g. a cyclopen-tene derivative such as 12. However, good yields have been achieved in only a few cases ... [Pg.30]

The Baylis-Hillman reaction is usually carried out under mild conditions (0°C or room temperature). The reaction time varies from a few minutes to even days. With the proper catalyst, good yields are possible. In the absence of an aldehyde or ketone as the electrophilic component, a dimerization of the activated alkene can take place under the influence of the catalyst, as also observed as a side reaction under the usual reaction conditions ... [Pg.30]

In the presence of a base such as l,4-diazabicyclo[2.2.2]octane (DABCO) or tri-alkylphosphines, conjugated carbonyl compounds such as esters and amides add to aldehydes via the a-carbon to give a-alkenyl-P-hydroxy esters or amides. This sequence is called the Baylis-Hillman reaction and a simple example is... [Pg.1212]

Addition of conjugated alkenes to aldehydes (the Baylis-Hillman reaction)... [Pg.1675]

The asymmetric Baylis-Hillman reaction of sugar-derived aldehydes as chiral electrophiles with an activated olefin in dioxane water (1 1) proceeded with 36-86% de and in good yields of the corresponding glycosides (Eq. 10.47).104 The use of chiral /V-mcthylprolinol as a chiral base catalyst for the Baylis-Hillman reaction of aromatic aldehydes with ethyl acrylate or methyl vinyl ketone gave the adducts in good yields with moderate-to-good enantioselectivities in l,4-dioxane water (1 1, vol/vol) under ambient conditions.105... [Pg.333]

PDMS thimble contained in glass vial. The substrate, an acetal, is within the PD MS thimble and undergoes an acid-catalyzed transformation into an aldehyde. The aldehyde then diffuses to the exterior and undergoes the Baylis—Hillman reaction catalyzed by DMAP to give the product, (b) Various acid and base... [Pg.150]

In the next step of the sequence, the authors sought to introduce a hydroxy-methylene substituent at the unsubstituted 7-position of the enone. This bond construction can be carried out by conducting a Baylis-Hillman reaction with formaldehyde. In this instance, the authors used a modification of the Baylis-Hillman reaction which involves the use of a Lewis acid to activate the enone [26]. Under these conditions, the enone 42 is treated with excess paraformaldehyde in the presence of triethylphosphine (1 equiv), lanthanum triflate (5 mol%), and triethanolamine (50 mol%). It is proposed that the lanthanum triflate forms a complex with the triethanolamine. This complex is able to activate the enone toward 1,4-addition of the nucleophilic catalysts (here, triethylphosphine). In the absence of triethanolamine, the Lewis acid catalyst undergoes nonproductive complexation with the nucleophilic catalyst, leading to diminution of catalysis. Under these conditions, the hydroxymethylene derivative 37 was formed in 70 % yield. In the next step of the sequence, the authors sought to conduct a stereoselective epoxidation of the allylic... [Pg.47]

Alkyl 2-(hydroxymethyl)acrylates are versatile functionalized monomers and synthetic building blocks. Conventional preparations employ the Baylis-Hillman reaction which involves the addition of formaldehyde to the parent acrylate ester, catalyzed by l,4-diazabicyclo[2.2.2]octane (DABCO). These reactions typically take several days at room temperature, but can be achieved within minutes in the CMR and MBR (Scheme 2.4). Rapid heating under pressure prevents loss of formaldehyde. Subsequent cooling limits hydrolysis of the product, as well as dimerization and polymerization [33],... [Pg.44]

Chiral fe-thiourea-type catalysts effectively provide the Baylis Hillman reaction with cyclohexenone and aldehydes.181 In several reactions, thiourea derivatives have been used as significant and specific catalyst because of their intermolecular hydrogen bonding ability (Scheme 74).182 186... [Pg.172]

Hydroxyazetidin-2-ones can be oxidised efficiently to azetidine-2,3-diones by P205 in DMSO <00JPR585>, and then the 3-carbonyl group can be alkylated stereoselectively by application of the Baylis-Hillman reaction <99TL7537> or by use of substituted propargyl bromides to provide densely functionalized 3-hydroxy-P-lactams . [Pg.79]

The Baylis-Hillman reaction of TV-protected 3-substituted 4-formylazetidin-2-ones with methyl vinyl ketone has been used to prepare intermediates from which highly functionalised P-lactams fused to medium rings were obtained by radical, stereocontrolled methods <99CC1913>. [Pg.82]

Racker et al. have developed an interesting new combinatorial method for the synthesis of [l,4]oxazepin-7-ones (eg 139, R = Ph) from aldehydes and a-amino alcohols with the Baylis-Hillman reaction being a key step . [Pg.369]

A titanium(iv) chloride mediated Baylis-Hillman-type or aldol reaction between a-ketoesters and cyclohex-2-enones has been studied (Equation (13)).77 The steric effect of the R2 substituent is crucial for the reaction pathway since the aldol reaction only proceeds with the unsubstituted cyclohexenone (aldol adduct 71 with R2 = H to a small extent the Baylis-Hillman reaction occurs), whereas with the substituted substrate (R2 = Me) gives exclusively the Baylis-Hillman adduct 72. [Pg.418]

It is also possible to carry out a substrate-controlled reaction with aldehydes in an asymmetric way by starting with an acetylene bearing an optically active ester group, as shown in Eq. 9.8 [22]. The titanium—acetylene complexes derived from silyl propiolates having a camphor-derived auxiliary react with aldehydes with excellent diastereoselectivity. The reaction thus offers a convenient entry to optically active Baylis—Hillman-type allyl alcohols bearing a substituent (3 to the acrylate group, which have hitherto proved difficult to prepare by the Baylis—Hillman reaction itself. [Pg.326]

The synthesis shown in Fig. 40 provided access to heptoses,55 but according to our definition, this is not a higher sugar synthesis. However, the approach to such derivative was based on the Baylis-Hillman reaction of acyclic sugar-derived aldehydes, a reaction not commonly applied in sugar chemistry and worth to mention in this review. [Pg.245]

A fundamentally different approach to the synthesis of 3-pyrrolines is evidenced in the annulation in Eq. 13.50 [58]. Ethyl 2,3-butadienoate 150 reacts with N-sulfony-limine 151 in the presence of triphenylphosphine under very mild conditions to give JV-protected 3-pyrroline 152 in 90% yield. The mechanism that has been postulated is related to that of the Baylis-Hillman reaction. Michael addition of triphenylphosphine to the allenyl ester generates a zwitterion that combines with the imine to give 153 in a non-concerted process. This is followed by ring closure, proton exchange and expulsion of triphenylphosphine to give 152. This annulation is successful only for aromatic or cinnamyl imines [59]. [Pg.838]

The Baylis-Hillman reaction (Scheme 3) of ethyl vinyl ketone with electron-deficient aromatic aldehydes (e.g. where R = 0-NO2C6H4), in MeCN or EtCN solution, has been found to proceed enantioselectively in presence of catalytic base (32) derived from proline. The Michael adduct formed between the catalyst and the vinyl... [Pg.357]

The promoters of the so-called chalcogenide Morita-Baylis-Hillman reaction are Kataoka and co-workers who employed sulfide and TiCl for dual Lewis acid-base activation. Later, in 1996 the ability of the combination of sulfide/TBDMSOTf to promote the reaction was reported [110], Asymmetric version of the Baylis-Hillman reaction has been achieved by using chiral sulfide in place of SMe. The best ee was 94% in combination with a high yield of 88% in 5 h (Scheme 39) [ 111 ]. [Pg.368]

Ionic liquids have been also explored in the Baylis-Hillman reaction [204-206]. The application of the enantiopure ionic liquid 73 in the Baylis-Hilhnan reaction by Vo-Thanh [207] resulted in an enantiomeric excess of up to 44% with 1 equiv. of the Lewis base catalyst DABCO (Scheme 81). It was shown that it was essential to have a hydroxy group incorporated in the ionic liquid in order to obtain significant ee. [Pg.385]

The Baylis-Hillman reaction has also been used to... [Pg.314]

Unfortunately, starting from the preformed imine and acrylate under conditions optimized for the Baylis-Hillman reaction, the authors could not reproduce the results from the Baylis-Hillman trials they obtained only conversions up to 46% and yields of up to 30% (Scheme 39) [89]. [Pg.192]

Because many of them are nearly inert, ionic liquids have been used to stabilize highly polar or ionic transition states. Ionic liquids provide favorable media for the formation and stabilization of intermediates in reactions that proceed through charged intermediates. An example is the Baylis-Hillman reaction catalyzed by 1,4-diazabicyclo (222). octane (DABCO) (Scheme 8) (162). [Pg.191]

In the proposed mechanism (Scheme 9), the rate-determining step is the reaction between aldehyde and enolate. In the absence of a solvent, a major issue with this reaction is the typical low rate and the need for a high concentration of catalyst (usually DABCO). It was reported recently that, under basic conditions, the ionic liquid [BDMIM][PF6] is inert and that the Baylis Hillman reaction in [BDMIMjPFg proceeds smoothly with better yields than in [BMIMjPFg (163). [Pg.191]

Fig. 13. Effect of the ionic liquid [BMIM]PF6 on catalysis of the Baylis-Hillman reaction. Reproduced with permission from Rosa et al. 162). Fig. 13. Effect of the ionic liquid [BMIM]PF6 on catalysis of the Baylis-Hillman reaction. Reproduced with permission from Rosa et al. 162).
The enol ethers generated in situ by the addition of ethanol to l,4-pentadiyn-3-ones are cyclised to the 4/f-chalcogenopyran-4-ones on treatment with disodium chalcogenides (Scheme 40) <99JHC707>. The 2,6-diphenyl derivatives are useful catalysts for the Baylis-Hillman reaction <99TL3741>. [Pg.332]

There has been a continuing effort to make the Baylis-Hillman reaction a catalytic asymmetric process. Scott Schnauss of Boston University recently reported (J. Am. Chem. Soc. 125 12094, 2003) an elegant solution to this problem, based on the use of Binol-derived Bronsted acids as catalysts. The product hydroxy enones such as 6 are interesting in themselves, and also as substrates for further transformation, for instance by Claisen rearrangement. [Pg.38]

Substituted allyl alcohols can be prepared on insoluble supports under mild conditions using the Baylis-Hillman reaction (Figure 7.2). In this reaction, an acrylate is treated with a nucleophilic tertiary amine (typically DABCO) or a phosphine in the presence of an aldehyde. Reversible Michael addition of the amine to the acrylate leads to an ester enolate, which then reacts with the aldehyde. The resulting allyl alcohols are valuable intermediates for the preparation of substituted carboxylic acids [43,44],... [Pg.217]


See other pages where The Baylis-Hillman Reaction is mentioned: [Pg.30]    [Pg.265]    [Pg.82]    [Pg.331]    [Pg.379]    [Pg.167]    [Pg.30]    [Pg.825]    [Pg.826]    [Pg.838]    [Pg.160]    [Pg.161]   


SEARCH



And the Baylis-Hillman reaction

Baylis-Hillman

Baylis-Hillman Reaction on the Solid Phase

Baylis-Hillman reaction

Hillman

In the Baylis-Hillman reaction

Systems for the Morita-Baylis-Hillman Reaction

Templates Derived from the Baylis-Hillman Reaction

The Baylis-Hillman Reaction and its Morita Variant

The Morita-Baylis-Hillman Reaction

© 2024 chempedia.info