Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thalliums formation

Thallium(I) acetate, 24 630-632 Thallium compounds, in organic reactions, 24 635 Thallium formate, 24 630 Thallium halides, 24 632 Thallium ion, 24 629 Thallium nitrate, uses for, 24 636 Thallium salts, 24 630, 632 Thallium sulfate, uses for, 24 636 Thallium (III) compounds, in organic reactions, 24 635-636 Thallium(III) fluoride, 24 632 Thallium(III) ion, 24 630 Thallium(III) salts, 24 632 Thallium(III) trifluoroacetate, 24 635 Thallium (Tl), 24 627-641... [Pg.936]

Uses. Thallium compounds have limited use in industrial applications. The use of thallous sulfate in rodenticides and insecticides has been replaced by other compounds less harm fill to animals (see Insect control technology Pesticides). Thallium sulfide has been used in photoelectric cells (see Photovoltaic cells). A thallium bromide—thallium iodide mixture is used to transmit infrared radiation for signal systems. Thallous oxide is used in the manufacture of glass (qv) that has a high coefficient of refraction. Thallium formate—malonate aqueous solutions (Cletici s solution) have been used in mineral separations. Many thallium compounds have been used as reagents in oiganic synthesis in research laboratories. [Pg.470]

Thallium formate solution (saturated) 3.17 (12 C) 4.76 (90 C) Densest known aqueous solution mobile may be diluted with water. Light yellow when freshly prepared, becoming brown Upon standing the brown color can be removed with... [Pg.99]

Thallium formate and malonate solution (1 1) (saturated) (Cleric solution) 4.07 (12 C) 4.65 (50 C) 5 (95 C) charcoal by heating the diluted, solution. Somewhat difficult to prepare marked changes in density with temperature and evaporation. [Pg.99]

Clericl s solution is prepared by dissolving equal weights of thallium formate and malonate in the minimum amount of water. [Pg.885]

Thallium formate Thallium formate 3500 Highly toxic risk of fatal thallium poisoning. [Pg.1173]

The true density of fibres was determined by flotation in thallium malonate/thallium formate solutions (Clerici solutiais) by grinding small amounts of fibre, suspension in a soluticn of known density, and centrifuging. When no separaticm occurred cn centrifuging the fibre density was taken to be that of the solution. The precisicn of the method is +-0.05g/inl. [Pg.617]

Only thallium of the Group III elements is affected by air at room temperature and thalliumflll) oxide is slowly formed. All the elements, however, burn in air when strongly heated and, with the exception of gallium, form the oxide M2O3 gallium forms a mixed oxide of composition GaO. In addition to oxide formation, boron and aluminium react at high temperature with the nitrogen in the air to form nitrides (BN and AIN). [Pg.144]

Selectivity of propylene oxide from propylene has been reported as high as 97% (222). Use of a gas cathode where oxygen is the gas, reduces required voltage and eliminates the formation of hydrogen (223). Addition of carbonate and bicarbonate salts to the electrolyte enhances ceU performance and product selectivity (224). Reference 225 shows that use of alternating current results in reduced current efficiencies, especiaHy as the frequency is increased. Electrochemical epoxidation of propylene is also accompHshed by using anolyte-containing silver—pyridine complexes (226) or thallium acetate complexes (227,228). [Pg.141]

A very simple treatment can be carried out by assuming that the liquid phase is a series of ideal solutions of lead and thallium, and that in the solid phase isomorphous replacement of thallium atoms in the PbTl3 structure by lead atoms occurs in the way corresponding to the formation of an ideal solution. For the liquid phase the free energy would then be represented by the expression... [Pg.594]

The mechanism of oxidation probably involves in most cases the initial formation of a glycol (15-35) or cyclic ester,and then further oxidation as in 19-7. In line with the electrophilic attack on the alkene, triple-bonds are more resistant to oxidation than double bonds. Terminal triple-bond compounds can be cleaved to carboxylic acids (RC=CHRCOOH) with thallium(III) nitrate or with [bis(trifluoroacetoxy)iodo]pentafluorobenzene, that is, C6F5l(OCOCF3)2, among other reagents. [Pg.1526]

The reaction of 1,2-dithiolanes with 2- and 4-picolyllithium has been examined <96PS(112)101> and the reactions of thioanhydrides such as 94 with both thiols <95JOC3964> and amines <96TL5337> have been reported. Treatment of 1,2-dithiolium salts with lithium or thallium cyclopentadienide results in formation of a variety of bi-, tri- and tetracyclic products <96LA109>. Reaction of 95 with trimethyl phosphite gives some of the desired coupling product but also the phosphonates 96 <96PS(109)557>. [Pg.199]

The mechanisms of these reactions are presumably analogous to those of the Pr6vost and Woodward-Prevost reactions. In the first step of the reaction of iodine and thallium(I) acetate with cyclohexene in both parts A and B of this procedure, trans-2-iodocyclohexyl acetate is formed. The second equivalent of thal-lium(I) acetate scavenges iodide ion during formation of the 1,3-... [Pg.87]

Specifically, it has recently been found 149) that diarylthallium tri-fluoroacetates may be converted into aromatic iodides by refluxing a solution in benzene with an excess of molecular iodine. Yields are excellent (74-94%) and the overall conversion represents, in effect, a procedure for the conversion of aromatic chlorides or bromides into aromatic iodides via intermediate Grignard reagents. The overall stoichiometry for this conversion is represented in Eq. (10), and it would appear that the initial reaction is probably formation of 1 mole of aromatic iodide and 1 mole of arylthallium trifluoroacetate iodide [Eq. (8)] which subsequently spontaneously decomposes to give a second mole of aromatic iodide and thallium(I) trifluoroacetate [Eq. (9)]. Support for this interpretation comes from the... [Pg.158]

For example, photolysis of a suspension of an arylthallium ditrifluoro-acetate in benzene results in the formation of unsymmetrical biphenyls in high yield (80-90%) and in a high state of purity 152). The results are in full agreement with a free radical pathway which, as suggested above, is initiated by a photochemically induced homolysis of the aryl carbon-thallium bond. Capture of the resulting aryl radical by benzene would lead to the observed unsymmetrical biphenyl, while spontaneous disproportionation of the initially formed Tl(II) species to thallium(I) trifluoroacetate and trifluoroacetoxy radicals, followed by reaction of the latter with aryl radicals, accounts for the very small amounts of aryl trifluoroacetates formed as by-products. This route to unsymmetrical biphenyls thus complements the well-known Wolf and Kharasch procedure involving photolysis of aromatic iodides 171). Since the most versatile route to the latter compounds involves again the intermediacy of arylthallium ditrifluoroacetates (treatment with aqueous potassium iodide) 91), these latter compounds now occupy a central role in controlled biphenyl synthesis. [Pg.171]

Monoalkylthallium(III) compounds can be prepared easily and rapidly by treatment of olefins with thallium(III) salts, i.e., oxythallation (66). In marked contrast to the analogous oxymercuration reaction (66), however, where treatment of olefins with mercury(II) salts results in formation of stable organomercurials, the monoalkylthallium(III) derivatives obtained from oxythallation are in the vast majority of cases spontaneously unstable, and cannot be isolated under the reaction conditions employed. Oxythallation adducts have been isolated on a number of occasions (61, 71,104,128), but the predominant reaction pathway which has been observed in oxythallation reactions is initial formation of an alkylthallium(III) derivative and subsequent rapid decomposition of this intermediate to give products derived by oxidation of the organic substrate and simultaneous reduction of the thallium from thallium(III) to thallium(I). The ease and rapidity with which these reactions occur have stimulated interest not only in the preparation and properties of monoalkylthallium(III) derivatives, but in the mechanism and stereochemistry of oxythallation, and in the development of specific synthetic organic transformations based on oxidation of unsaturated systems by thallium(III) salts. [Pg.173]

The utility of thallium(III) salts as oxidants for nonaromatic unsaturated systems is a consequence of the thermal and solvolytic instability of mono-alkylthallium(III) compounds, which in turn is apparently dependent on two major factors, namely, the nature of the associated anion and the structure of the alkyl group. Compounds in which the anion is a good bidentate ligand are moderately stable, for example, alkylthallium dicar-boxylates 74, 75) or bis dithiocarbamates (76). Alkylthallium dihalides, on the other hand, are extremely unstable and generally decompose instantly. Methylthallium diacetate, for example, can readily be prepared by the exchange reaction shown in Eq. (11) it is reasonably stable in the solid state, but decomposes slowly in solution and rapidly on being heated [Eq. (23)]. Treatment with chloride ion results in the immediate formation of methyl chloride and thallium(I) chloride [Eq. (24)] (55). These facts can be accommodated on the basis that the dicarboxylates are dimeric while the... [Pg.174]

The effect of structure of the alkyl group on the stability of monoalkyl-thallium(III) compounds can best be understood by reference to the different mechanisms by which these compounds undergo decomposition. A number of authors have attributed the instability of monoalkylthallium(III) compounds to facile C—T1 bond heterolysis and formation of carbonium ions [Eq. (25)] (52, 66, 79). This explanation is, however, somewhat suspect in cases where primary carbonium ions would be involved and either the two-step sequence shown in Eqs. (26), (27), or the fully synchronous 8 2 displacement shown in Eq. (28), is more compatible with the known facts. Examination of the oxythallation reactions that have been described reveals that Eq. (27) [or, for concerted reactions, Eq. (28)] can be elaborated, and that five major types of decomposition can be recognized for RTlXj compounds. These are outlined in Scheme 8, where Y, the nucleophile... [Pg.175]

The major problem encountered in the oxidation of olefins by thallium-(III) acetate is the formation of mixtures of products that are frequently... [Pg.179]

Formation of mixtures of products in these reactions can be attributed largely to the properties of the acetate group. The reactions of a number of cycloalkenes with thallium(III) salts have been investigated in some detail and the results obtained have served both to elucidate the stereochemistry of oxythallation and to underline the important role assumed by the anion of the metal salt in these oxidations. The most unambiguous evidence as to the stereochemistry of oxythallation comes from studies by Winstein on the oxythallation of norbornene (VII) and norbornadiene (VIII) with thal-lium(III) acetate in chloroform, in which the adducts (IX) and (X) could be precipitated from the reaction mixture by addition of pentane 128) (Scheme 11). Both by chemical means and by analogy with the oxymercuration... [Pg.180]


See other pages where Thalliums formation is mentioned: [Pg.406]    [Pg.468]    [Pg.141]    [Pg.468]    [Pg.886]    [Pg.16]    [Pg.406]    [Pg.468]    [Pg.141]    [Pg.468]    [Pg.886]    [Pg.16]    [Pg.75]    [Pg.59]    [Pg.57]    [Pg.43]    [Pg.207]    [Pg.243]    [Pg.76]    [Pg.88]    [Pg.148]    [Pg.149]    [Pg.158]    [Pg.162]    [Pg.163]    [Pg.164]    [Pg.169]    [Pg.172]    [Pg.180]    [Pg.182]    [Pg.183]    [Pg.186]    [Pg.199]    [Pg.217]    [Pg.170]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.10 , Pg.11 , Pg.21 , Pg.53 ]

See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.11 , Pg.21 , Pg.53 ]




SEARCH



Thallium formate

© 2024 chempedia.info