Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetrahydrofuran, THF

Wittig reactions may be carried out m a number of different solvents normally tetrahydrofuran (THF) or dimethyl sulfoxide (DMSO) is used... [Pg.730]

Direct alkylation of esters can be carried out by forming the enolate with LDA fol lowed by addition of an alkyl halide Tetrahydrofuran (THF) is the solvent most often used m these reactions... [Pg.903]

In the now-obsolete furfural process, furfural was decarboxylated to furan which was then hydrogenated to tetrahydrofuran (THF). Reaction of THF with hydrogen chloride produced dichlorobutene. Adiponitrile was produced by the reaction of sodium cyanide with the dichlorobutene. The overall yield from furfural to adiponitrile was around 75%. [Pg.220]

Butanediol. 1,4-Butanediol [110-63-4] made from formaldehyde and acetylene, is a significant market for formaldehyde representing 11% of its demand (115). It is used to produce tetrahydrofuran (THF), which is used for polyurethane elastomers y-butyrolactone, which is used to make various pyrroHdinone derivatives poly(butylene terephthalate) (PBT), which is an engineering plastic and polyurethanes. Formaldehyde growth in the acetylenic chemicals market is threatened by alternative processes to produce 1,4-butanediol not requiring formaldehyde as a raw material (140) (see Acetylene-derived chemicals). [Pg.497]

These solvents include tetrahydrofuran (THF), 1,4-dioxane, chloroform, dichioromethane, and chloroben2ene. The relatively broad solubiHty characteristics of PSF have been key in the development of solution-based hoUow-fiber spinning processes in the manufacture of polysulfone asymmetric membranes (see Hollow-fibermembranes). The solvent Hst for PES and PPSF is short because of the propensity of these polymers to undergo solvent-induced crysta11i2ation in many solvents. When the PES stmcture contains a small proportion of a second bisphenol comonomer, as in the case of RADEL A (Amoco Corp.) polyethersulfone, solution stabiHtyis much improved over that of PES homopolymer. [Pg.467]

A number of techniques have been developed for the trace analysis of siUcones in environmental samples. In these analyses, care must be taken to avoid contamination of the samples because of the ubiquitous presence of siUcones, particularly in a laboratory environment. Depending on the method of detection, interference from inorganic siUcate can also be problematic, hence nonsiUca-based vessels are often used in these deterrninations. SiUcones have been extracted from environmental samples with solvents such as hexane, diethyl ether, methyl isobutylketone, ethyl acetate, and tetrahydrofuran (THF)... [Pg.59]

The nitrogen of these aminocarboranes can be alkylated to give, eg, 7-[N(CH3)3]-7-CB2qH22 [31117-16-5]. These compounds give closo-2-(Z. . ]Y, [38102-45-0] upon treatment with Na in tetrahydrofuran (THF) followed by iodine oxidation (eq. 63) (126). [Pg.241]

The reaction of calcium iodide and strontium iodide and the ion in tetrahydrofuran (THF) followed by treatment with acetonitrile... [Pg.250]

In the discussion of the relative acidity of carboxylic acids in Chapter 1, the thermodynamic acidity, expressed as the acid dissociation constant, was taken as the measure of acidity. It is straightforward to determine dissociation constants of such adds in aqueous solution by measurement of the titration curve with a pH-sensitive electrode (pH meter). Determination of the acidity of carbon acids is more difficult. Because most are very weak acids, very strong bases are required to cause deprotonation. Water and alcohols are far more acidic than most hydrocarbons and are unsuitable solvents for generation of hydrocarbon anions. Any strong base will deprotonate the solvent rather than the hydrocarbon. For synthetic purposes, aprotic solvents such as ether, tetrahydrofuran (THF), and dimethoxyethane (DME) are used, but for equilibrium measurements solvents that promote dissociation of ion pairs and ion clusters are preferred. Weakly acidic solvents such as DMSO and cyclohexylamine are used in the preparation of strongly basic carbanions. The high polarity and cation-solvating ability of DMSO facilitate dissociation... [Pg.405]

Katz, Lochmuller and Scott also examined acetonitrile/water, and tetrahydrofuran (THF)/water mixtures in the same way and showed that there was significant association between the water and both solvents but not nearly to the same extent as methanol/water. At the point of maximum association for methanol, the solvent mixture contained nearly 60% of the methanol/water associate. In contrast the maximum amount of THF associate that was formed amounted to only about 17%, and for acetonitrile the maximum amount of associate that was formed was as little as 8%. It follows that acetonitrile/water mixtures would be expected to behave more nearly as binary mixtures than methanol/water or THF/water mixtures. [Pg.133]

The lrialkyl(trifluorovmyl)slannanes were used in the Pd(0)-catalyzed coupling reaction of aryl halides [77] (equation 12). The product yield increased with the solvent type in the order hexamethylphosphorus triamide (HMPT) DMF > dimethyl sulfoxide (DMSO) > tetrahydrofuran (THF) > CgHg > C2H4CI2. [Pg.672]

Narrow-bore columns are most useful for the analysis of polymers that are difficult to analyze in inexpensive solvents. However, if the appropriate equipment is available, good results can be obtained for a broad range of standard analyses. A comparison of an analysis of standards between an equivalent bank of conventional 7.8-mm and solvent efficient 4.6-mm columns is shown in Fig. 11.4. The columns used were Styragel HR 0.5, 1, 2, and 3 columns at 35°C with tetrahydrofuran (THF) as the solvent. The flow rate was 1 ml/min for the conventional columns (Fig. 11.4A) and 0.35 ml/min for the solvent-efficient 4.6-mm columns (Fig. 11.4B). If the correct equipment is available, the reduced solvent consumption of these solvent-efficient Styragel columns is of value to the environmentally conscious user. [Pg.334]

The plate number for the same column also depends on the eluent, e.g., a permitted operation for some styrene-divinylbenzene columns is to change the eluent from tetrahydrofuran (THF) to dimethylacetamide (DMAC) and then return to THF. The plate number in DMAC is considerably lower than in THF. After the replacement of DMAC by THF the old N value is obtained again. [Pg.433]

Tetrahydrofuran (THF) is usually the solvent of choice for poly (acrylates). It is an excellent thermodynamic as well as kinetic solvent, its only drawback being its volatility and flammability. [Pg.540]

The reaction of lead tetraacetate (LTA) with monohydric alcohols produces functionalization at a remote site yielding derivatives of tetrahydrofuran (THF) 12). An example is the reaction of 1-pentanol with LTA in nonpolar solvents which produces 30% THF. The reaction, which is believed to proceed through free-radical intermediates, gives a variable distribution of oxidation products depending on solvent polarity, temperature, reaction time, reagent ratios, and potential angle strain in the product. [Pg.11]

A solution of 1.5 g of dl-3-(1, r-dimethylheptyi)-6,6a,7,8-tetrahydro-1-hydroxy-6,6-di-methyl-9H-dibenzo(b,d] pyran-9-one in 50 mi of anhydrous tetrahydrofuran (THF) was added dropwise to a soiution of iithium metal in liquid ammonia at -80°C. Excess iithium metal was added in chunks to the solution as the biue color, indicating free dissolved lithium, disappeared. After the addition was complete, ammonium chloride was added to react with any excess lithium metal still present. [Pg.1045]

A number of studies have recently been devoted to membrane applications [8, 100-102], Yoshikawa and co-workers developed an imprinting technique by casting membranes from a mixture of a Merrifield resin containing a grafted tetrapeptide and of linear co-polymers of acrylonitrile and styrene in the presence of amino acid derivatives as templates [103], The membranes were cast from a tetrahydrofuran (THF) solution and the template, usually N-protected d- or 1-tryptophan, removed by washing in more polar nonsolvents for the polymer (Fig. 6-17). Membrane applications using free amino acids revealed that only the imprinted membranes showed detectable permeation. Enantioselective electrodialysis with a maximum selectivity factor of ca. 7 could be reached, although this factor depended inversely on the flux rate [7]. Also, the transport mechanism in imprinted membranes is still poorly understood. [Pg.180]

Tetrabutylammonium fluoride (TBAF) is usually used in the form of the trihydrate or as a solution in tetrahydrofuran (THF). The pure form is difficult to isolate, owing to decomposition to FFF, tributylamine, and but-l-ene [18, 19] on dehydration. It has been used for a variety of reactions, including as a catalyst for various reactions with silicon compounds [20, 21]. One of its main uses is in the cleavage of silyl ether protecting groups [22]. [Pg.177]

In the laboratory, alkenes are often hydrated by the oxymercuration procedure. When an alkene is treated with mercury(II) acetate Hg(02CCH3)2, usually abbreviated Hg(OAc)2l in aqueous tetrahydrofuran (THF) solvent, electrophilic addition of Hg2+ to the double bond rapidly occurs. The intermediate orgnnomercury compound is then treated with sodium borohydride, NaBH4, and an alcohol is produced. For example ... [Pg.222]

Little work has been done on bare lithium metal that is well defined and free of surface film [15-24], Odziemkowski and Irish [15] showed that for carefully purified LiAsF6 tetrahydrofuran (THF) and 2-methyltetrahydrofuran 2Me-THF electrolytes the exchange-current density and corrosion potential on the lithium surface immediately after cutting in situ, are primarily determined by two reactions anodic dissolution of lithium, and cathodic reduc-... [Pg.422]

Acetaldehyde, acetone, tetrahydrofuran (THF), ethyl acetate, isopropyl alcohol, ethyl alcohol, 4-methyl-l,3-dioxolane, n-pro-pyl acetate, methyl isobutyl ketone, -propyl alcohol, toluene, n-butyl alcohol, 2-ethoxyethanol, and cyclohexane... [Pg.230]

Tetrahydrofuran (THF) impurities acetone, acrolein, 2,3-DHF, butyraldehyde, isopropyl alcohol, THF. 1,3-dioxolane, 2-methyl THF, benzene, and 3-methyl THF... [Pg.308]


See other pages where Tetrahydrofuran, THF is mentioned: [Pg.390]    [Pg.196]    [Pg.232]    [Pg.281]    [Pg.582]    [Pg.82]    [Pg.391]    [Pg.396]    [Pg.237]    [Pg.47]    [Pg.396]    [Pg.4]    [Pg.260]    [Pg.9]    [Pg.80]    [Pg.355]    [Pg.558]    [Pg.612]    [Pg.189]    [Pg.38]    [Pg.215]    [Pg.345]    [Pg.490]    [Pg.328]    [Pg.460]    [Pg.461]    [Pg.617]    [Pg.363]   
See also in sourсe #XX -- [ Pg.97 , Pg.298 , Pg.458 , Pg.462 ]

See also in sourсe #XX -- [ Pg.95 , Pg.285 , Pg.449 ]

See also in sourсe #XX -- [ Pg.95 , Pg.285 , Pg.449 ]

See also in sourсe #XX -- [ Pg.95 , Pg.285 , Pg.449 ]




SEARCH



Polymerization of tetrahydrofuran, THF

THF

THF—See Tetrahydrofuran

Tetrachlorobis(tetrahydrofuran)hafnium(IV), HfCl4(thf)

Tetrachlorobis(tetrahydrofuran)niobium(IV), NbCl4(thf)

Tetrachlorobis(tetrahydrofuran)zirconium(IV), ZrCl4(thf)

© 2024 chempedia.info