Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terpenes enzyme

The enzyme catalyzed reactions that lead to geraniol and farnesol (as their pyrophosphate esters) are mechanistically related to the acid catalyzed dimerization of alkenes discussed m Section 6 21 The reaction of an allylic pyrophosphate or a carbo cation with a source of rr electrons is a recurring theme m terpene biosynthesis and is invoked to explain the origin of more complicated structural types Consider for exam pie the formation of cyclic monoterpenes Neryl pyrophosphate formed by an enzyme catalyzed isomerization of the E double bond m geranyl pyrophosphate has the proper geometry to form a six membered ring via intramolecular attack of the double bond on the allylic pyrophosphate unit... [Pg.1089]

In this chapter we will examine how cells and enzymes are used in the transformation of lipids. The lipids are, of course, a very diverse and complex series of molecular entities including fatty acids, triglycerides, phospholipids, glycolipids, aliphatic alcohols, waxes, terpenes and steroids. It is usual to teach about these molecules, in a biochemical context, in more or less the order given above, since this represents a logical sequence leading from simple molecules to the more complex. Here, however, we have adopted a different strategy. [Pg.294]

Polyene cyclizations are of substantial value in the synthesis of polycyclic terpene natural products. These syntheses resemble the processes by which the polycyclic compounds are assembled in nature. The most dramatic example of biosynthesis of a polycyclic skeleton from a polyene intermediate is the conversion of squalene oxide to the steroid lanosterol. In the biological reaction, an enzyme not only to induces the cationic cyclization but also holds the substrate in a conformation corresponding to stereochemistry of the polycyclic product.17 In this case, the cyclization is terminated by a series of rearrangements. [Pg.867]

Celik, A., Flitsch, S.L. and Turner, N.J. (2005) Efficient terpene hydroxylation catalysts based upon P450 enzymes derived from actinomycetes. Organic Biomolecular Chemistry, 3, 2930-2934. [Pg.31]

It is an exciting prospect that catalysts of this nature may lead to artificial enzymes capable of processing natural and unnatural polyisoprenoids to generate various useful terpenes. [Pg.292]

Whereas some species oxidize host terpenes more randomly, producing an array of rather unspecific volatiles with little information, others use highly selective enzyme systems for the production of unique olfactory signals. However, apart from transformations of monoterpene hydrocarbons of host trees, oxygenated monoterpenes may well be biosynthesized de novo by the beetles (see below). [Pg.160]

Recently it was shown by radiolabeling studies that the formation of the serrulatane skeleton is catalyzed by the pseudopterosin diterpene cyclase, which can be considered as a key enzyme in terpene biosynthetic pathways (Scheme 2). The elisabethatriene cyclase is a monomer with a molecular mass of47kDa [25]. [Pg.13]

The brushtail possum, T. vulpecula, feeds on eucalyptus leaves. Among the terpenes these contain, 1,8-cineole is the most abundant. Feeding experiments with increasing levels of cineole showed that this compound limits food intake. In the brushtail possum, multiple pathways oxidize cineole, and this total system, rather than any one enzyme, limits the amount of cineole that the animal... [Pg.306]

Prenylation, the key step in terpene biosynthesis, is catalyzed by prenyltransferases. These enzymes are responsible for the condensation of isopentenyl pyrophosphate (IPP) with an allyl pyrophosphate, thus yielding isoprenoids. Numerous studies have been performed with fluorinated substrates in order to determine the mechanism of the reactions that involve these enzymes prenyltransferases, farnesyl diphosphate synthase (FDPSase), famesyltransferase (PFTase), and IPP isomerase. These studies are based on the potential ability of fluorine atoms to destabilize cationic intermediates, and then slow down S l type processes in these reactions. [Pg.242]

Figure 5.7. There are many examples now known of the synthesis of NPs via matrix pathways (see also Figure 9.3). However, a nice example of the benefit of such flexibility was revealed when a mutant of spearmint that had smelled more like peppermint was studied.A comparison of the terpenes in both plants revealed that the single gene mutation had not resulted in a single chemical change but multiple changes, in the mutant plant, a hydroxyl group was added to the 3-position of the cyclohexene ring of limonene while the wild-type hydroxylated the 6-position. Some of the other wild-type tailoring enzymes in the mutant did not discriminate fully between the 3- and 6-hydroxylated products so a new family of NPs were produced which gave the mutant plant an odour of peppermint. Figure 5.7. There are many examples now known of the synthesis of NPs via matrix pathways (see also Figure 9.3). However, a nice example of the benefit of such flexibility was revealed when a mutant of spearmint that had smelled more like peppermint was studied.A comparison of the terpenes in both plants revealed that the single gene mutation had not resulted in a single chemical change but multiple changes, in the mutant plant, a hydroxyl group was added to the 3-position of the cyclohexene ring of limonene while the wild-type hydroxylated the 6-position. Some of the other wild-type tailoring enzymes in the mutant did not discriminate fully between the 3- and 6-hydroxylated products so a new family of NPs were produced which gave the mutant plant an odour of peppermint.
Ergosterol, the predominant sterol in yeast cells, plays an important role in membrane fluidity, permeability and the activity of many membrane-bound enzymes. In terpene-treated cells, ergosterol synthesis was strongly inhibited, and a global upregulation of genes associated with the ergosterol biosynthesis pathway was described in response to terpene toxicity [80, 121]. [Pg.90]

Fig. 23.1 Microbial routes from natural raw materials to and between natural flavour compounds (solid arrows). Natural raw materials are depicted within the ellipse. Raw material fractions are derived from their natural sources by conventional means, such as extraction and hydrolysis (dotted arrows). De novo indicates flavour compounds which arise from microbial cultures by de novo biosynthesis (e.g. on glucose or other carbon sources) and not by biotransformation of an externally added precursor. It should be noted that there are many more flavour compounds accessible by biocatalysis using free enzymes which are not described in this chapter, especially flavour esters by esterification of natural alcohols (e.g. aliphatic or terpene alcohols) with natural acids by free lipases. For the sake of completeness, the C6 aldehydes are also shown although only the formation of the corresponding alcohols involves microbial cells as catalysts. The list of flavour compounds shown is not intended to be all-embracing but focuses on the examples discussed in this chapter... [Pg.513]

Another example of successful engineering of terpene biosynthesis is the constitutive overexpression of the gene encoding the first-step enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) in the DXP pathway in bacteria and Arabidopsis. In both cases, increased enzyme activity caused increased accumulation of downstream terpenoids, suggesting that DXPS is rate-limiting [8]. [Pg.617]


See other pages where Terpenes enzyme is mentioned: [Pg.240]    [Pg.138]    [Pg.239]    [Pg.265]    [Pg.461]    [Pg.340]    [Pg.664]    [Pg.208]    [Pg.274]    [Pg.276]    [Pg.49]    [Pg.409]    [Pg.280]    [Pg.207]    [Pg.226]    [Pg.163]    [Pg.166]    [Pg.170]    [Pg.171]    [Pg.172]    [Pg.172]    [Pg.639]    [Pg.57]    [Pg.488]    [Pg.489]    [Pg.489]    [Pg.144]    [Pg.173]    [Pg.182]    [Pg.195]    [Pg.540]    [Pg.545]    [Pg.547]    [Pg.550]    [Pg.554]    [Pg.617]    [Pg.618]   
See also in sourсe #XX -- [ Pg.76 ]

See also in sourсe #XX -- [ Pg.76 ]

See also in sourсe #XX -- [ Pg.29 , Pg.76 ]




SEARCH



Terpene biosynthesis enzymes

Terpene biosynthesis enzymes prenyltransferases

© 2024 chempedia.info