Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Templating flexibility

Only one set of pipelines and umbilicals (as with the template) are required from the manifold back to the host facility, saving unnecessary expense. Underwater manifolds are becoming very popular as they offer a great deal of flexibility in field development and can be very cost effective. [Pg.270]

Polymer supported xanthene derivatives have been used in the solid phase synthesis of 1-aminophosphinic acids, RCH(NH2)PH(0)0H, <%TL1647> and of C-terminal peptide amides <96JOC6326>. Xanthene units also feature in crown ethers <96JCS(P2)2091>, calixarenes <96JOC5670> and in a flexible template for a P-sheet nucleator <96JOC7408>. [Pg.300]

The most important nanomaterial synthesis methods include nanolithography techniques, template-directed syntheses, vapor-phase methods, vapor-liquid-solid (VLS) methods, solution-liquid-solid (SLS) approaches, sol-gel processes, micelle, vapor deposition, solvothermal methods, and pyrolysis methods [1, 2]. For many of these procedures, the control of size and shape, the flexibility in the materials that can be synthesized, and the potential for scaling up, are the main limitations. In general, the understanding of the growth mechanism of any as-... [Pg.295]

The use of ordered supramolecular assemblies, such as micelles, monolayers, vesicles, inverted micelles, and lyotropic liquid crystalline systems, allows for the controlled nucleation of inorganic materials on molecular templates with well-defined structure and surface chemistry. Poly(propyleneimine) dendrimers modified with long aliphatic chains are a new class of amphiphiles which display a variety of aggregation states due to their conformational flexibility [38]. In the presence of octadecylamine, poly(propyleneimine) dendrimers modified with long alkyl chains self-assemble to form remarkably rigid and well-defined aggregates. When the aggregate dispersion was injected into a supersaturated... [Pg.153]

Traditional methods for fabricating nano-scaled arrays are usually based on lithographic techniques. Alternative new approaches rely on the use of self-organizing templates. Due to their intrinsic ability to adopt complex and flexible conformations, proteins have been used to control the size and shape, and also to form ordered two-dimensional arrays of nanopartides. The following examples focus on the use of helical protein templates, such as gelatin and collagen, and protein cages such as ferritin-based molecules. [Pg.174]

The coordinated macrocycle readily reacts with alkoxide ions to yield products of type (71) (Taylor, Urbach Busch, 1969). In so doing additional flexibility is imparted to the ring which may reduce ring strain and, in part, provide a driving force for the reaction. Thus the coordinated imine carbons appear predisposed to attack by such nucleophiles. Based on this knowledge, elegant template syntheses of three-dimensional derivatives have been performed. The syntheses involved the reaction of [M(taab)]2+ (M = Ni, Cu) with the dialkoxide ions derived from bis(2-hydroxyethyl)sulphide or bis(2-hydroxyethyl)methylamine (Katovic, Taylor Busch, 1969). The products were demonstrated to be monomeric square-pyramidal complexes of type (72). The condensation... [Pg.35]

ActivityBase enables the capture, validation, and visualization of high-throughput screening data. Integration with Microsoft Excel provides flexibility analysis template design. The chemically... [Pg.234]

Three methods can be followed for the synthesis of a SIB catalyst (i) zeolite synthesis around the metal complex (ii) template synthesis and (iii) the flexible ligand method. [Pg.1431]

The peculiar features of the three arAR supermolecules were translated into pharmacophore hypotheses by means of Catalyst software (Figure 8.2, unpublished results). Catalyst treats molecular structures as templates placing chemical functions in 3D space to interact with the receptor. Molecular flexibility is taken into account by considering each compound as a collection of conformers representing different areas of the molecules conformational space within a given energy range. [Pg.174]

Fig. 4. Schematic representation of template-assembled synthetic proteins. The conforma-tionally restricted template can be orthogonally protected and sequentially linked to helical segments to form a large variety of functionalized TASP proteins. Flexible spacers that connect the folded peptide segments and the template provide the necessary conformational freedom that will allow the hydrophobic residues to find their optimum orientations for packing the core... Fig. 4. Schematic representation of template-assembled synthetic proteins. The conforma-tionally restricted template can be orthogonally protected and sequentially linked to helical segments to form a large variety of functionalized TASP proteins. Flexible spacers that connect the folded peptide segments and the template provide the necessary conformational freedom that will allow the hydrophobic residues to find their optimum orientations for packing the core...
In the second part of this Chapter the thickness of the organic layer under discussion is slightly increased and a closer look at recent developments of more complex surface-bonded systems involving polymers is outlined. Despite the introduction of flexible polymer chains, the surface coating should still be defined and uncontrolled heterogeneities minimized. Here, especially, polymer brush-type layers where self-assembled monolayers (SAMs) are used as two-dimensional template systems for the preparation of well-defined surface coatings will be subject of a more detailed discussion. [Pg.397]


See other pages where Templating flexibility is mentioned: [Pg.99]    [Pg.507]    [Pg.207]    [Pg.357]    [Pg.86]    [Pg.550]    [Pg.965]    [Pg.30]    [Pg.149]    [Pg.19]    [Pg.361]    [Pg.406]    [Pg.67]    [Pg.54]    [Pg.291]    [Pg.309]    [Pg.402]    [Pg.73]    [Pg.227]    [Pg.107]    [Pg.235]    [Pg.12]    [Pg.350]    [Pg.239]    [Pg.41]    [Pg.162]    [Pg.24]    [Pg.521]    [Pg.455]    [Pg.621]    [Pg.243]    [Pg.2]    [Pg.33]    [Pg.47]    [Pg.63]    [Pg.69]    [Pg.153]    [Pg.143]    [Pg.211]    [Pg.210]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



© 2024 chempedia.info