Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature spin-lattice relaxation times

If the amount of the sample is sufficient, then the carbon skeleton is best traced out from the two-dimensional INADEQUATE experiment. If the absolute configuration of particular C atoms is needed, the empirical applications of diastereotopism and chiral shift reagents are useful (Section 2.4). Anisotropic and ring current effects supply information about conformation and aromaticity (Section 2.5), and pH effects can indicate the site of protonation (problem 24). Temperature-dependent NMR spectra and C spin-lattice relaxation times (Section 2.6) provide insight into molecular dynamics (problems 13 and 14). [Pg.68]

Fig. 19. Experimental spin alignment decay curves of chain deuterated PS-d3 at temperatures above and below the glass transition for various evolution times t,. Note the different timescales of t2 at the different temperatures. The straight lines indicate the decays of the plateau values on the timescale of the spin-lattice relaxation time T,. Sample characterization Mw = 141000, Mw/Mn = 1.13, atactic... Fig. 19. Experimental spin alignment decay curves of chain deuterated PS-d3 at temperatures above and below the glass transition for various evolution times t,. Note the different timescales of t2 at the different temperatures. The straight lines indicate the decays of the plateau values on the timescale of the spin-lattice relaxation time T,. Sample characterization Mw = 141000, Mw/Mn = 1.13, atactic...
Experimental data on nitrogen obtained from spin-lattice relaxation time (Ti) in [71] also show that tj is monotonically reduced with condensation. Furthermore, when a gas turns into a liquid or when a liquid changes to the solid state, no breaks occur (Fig. 1.17). The change in density within the temperature interval under analysis is also shown in Fig. 1.17 for comparison. It cannot be ruled out that condensation of the medium results in increase in rotational relaxation rate primarily due to decrease in free volume. In the rigid sphere model used in [72] for nitrogen, this phenomenon is taken into account by introducing the factor g(ri) into the angular momentum relaxation rate... [Pg.48]

The temperature mapping method used in Ref. [8] is based on measurements of the spin-lattice relaxation time Ti of a suitable liquid such as ethylene glycol filling... [Pg.221]

SFC-NMR is available from 200 to 800 MHz, and is suitable for all common NMR-detected nuclei. SFC/SFE-NMR requires dedicated probe-heads for high pressure (up to 350 bar) and elevated temperature (up to 100 °C). SFC-NMR is carried out with conventional packed columns, using modifier, pressure and temperature gradients. The resolution of 1H NMR spectra obtained in SFE-NMR and SFC-NMR coupling under continuous-flow conditions approaches that of conventionally recorded NMR spectra. However, due to the supercritical measuring conditions, the 111 spin-lattice relaxation times 7) are doubled. [Pg.486]

It appears that purification of commercially available solvents is sometimes required for the complete elimination of impurity resonances. Occasionally, these impurities may be turned into advantage, as in the case of C2D2CI4 where the (known) C2DHCI4 content may be used as an internal standard for quantitation. Thus, removal of every impurity peak is not always essential for identification and quantitative analysis of stabilisers in PE. Determination of the concentration of additives in a polymer sample can also be accomplished by incorporation of an internal NMR standard to the dissolution prepared for analysis. The internal standard (preferably aromatic) should be stable at the temperature of the NMR experiment, and could be any high-boiling compound which does not generate conflicting NMR resonances, and for which the proton spin-lattice relaxation times are known. 1,3,5-Trichlorobenzene meets the requirements for an internal NMR standard [48]. The concentration should be comparable to that of the analytes to be determined. [Pg.698]

Carotenoids incorporated in metal-substituted MCM-41 represent systems that contain a rapidly relaxing metal ion and a slowly relaxing organic radical. For distance determination, the effect of a rapidly relaxing framework Ti3+ ion on spin-lattice relaxation time,and phase memory time, Tu, of a slowly relaxing carotenoid radical was measured as a function of temperature in both siliceous and Ti-substituted MCM-41. It was found that the TM and 7) are shorter for carotenoids embedded in Ti-MCM-41 than those in siliceous MCM-41. [Pg.181]

T3C n.m.r. spectra were recorded for the oils produced at 400°, 450°, 550° and 600°C. As the temperature increased the aromatic carbon bands became much more intense compared to the aliphatic carbon bands (see Figure 8). Quantitative estimation of the peak areas was not attempted due to the effect of variations in spin-lattice relaxation times and nuclear Overhauser enhancement with different carbon atoms. Superimposed on the aliphatic carbon bands were sharp lines at 14, 23, 32, 29, and 29.5 ppm, which are due to the a, 8, y, 6, and e-carbons of long aliphatic chains (15). As the temperature increases, these lines... [Pg.277]

The "decrease of the spin temperature means an increase of population difference between the upper and lower energy spin states and consequently an increased sensitivity of the NMR experiment. From Equation (25), the temperature of dilute spins has been lowered by a factor 7x/y1 h, that is, V4 when X = 13C. This means an increased sensitivity of the FID resonance experiment equal to about 4 for the 13C nuclei. Because the X signal is created from the magnetization of dilute nuclei, the repetition time of NMR experiment depends on the spin-lattice relaxation time of the abundant spin species, protons, which is usually much shorter than the spin-lattice relaxation times of the dilute nuclei. This, a further advantage of cross polarization, delay between two scans can be very short, even in the order of few tens of milliseconds. [Pg.202]

Gayda, J.-P., Bertrand, P., Deville, A., More, C., Roger, G., Gibson, J.F., and Cammack, R. 1979. Temperature dependence of the electronic spin-lattic relaxation time in a 2-iron-2-sulfur protein. Biochimica et Biophysica Acta 581 15-26. [Pg.233]

Crystals of (TTF)[Au(C6F5)C1] have been grown by electrocrystallization [53] however, their crystal structure has not been determined. The room temperature conductivity, as measured on compacted pellets, is quite low (10-6 S cm-1). At room temperature, the EPR line width of these salts is about 10 G. This line width decreases with temperature as a result of increased spin-lattice relaxation times and a lower electrical conductivity. [Pg.14]

Fig. 30. Hydrogen spin lattice relaxation time T, in a-Si H against temperature for flake samples removed from their substrate (solid line) and for a-Si H on quartz substrates two weeks after deposition (triangles). The circle data points are for the quartz substrate samples ten months after deposition. The magnitude of the 40 K minimum of T, is inversely portional to the number of H2 molecules contributing to the relaxation process (Van-derheiden et al., 1987). [Pg.454]

Recently, Lipton et al. [25] have used zinc-67 NMR to investigate [Zn(HB(3,5-(CH3)2pz)3)2] complexes which have been doped with traces of paramagnetic [Fe(HB(3,4,5-(CH3)3pz)3)2]. The low-temperature Boltzmann enhanced cross polarization between XH and 67Zn has shown that the paramagnetic iron(II) dopant reduces the proton spin-lattice relaxation time, Tj, of the zinc complexes without changing the proton spin-lattice relaxation time in the Tip rotating time frame. This approach and the resulting structural information has proven very useful in the study of various four-coordinate and six-coordinate zinc(II) poly(pyrazolyl)borate complexes that are useful as enzymatic models. [Pg.108]

Morrow et al. measured the spin-lattice relaxation time Ti and quadrupole echo decay times T ) of headgroup deuterated d4-DMPC as a function of temperature and pressure to yield additional information about changes in the headgroup dynamics. Generally, motions in a LC phospholipid bilayer can... [Pg.185]

Jonas et al. measured the proton rotating frame spin-lattice relaxation time (Tip) at pressures from 1 bar to 5000 bar and at temperatures of 50 to 70 °C for DPPC and at 5 to 35 °C for POPC. If intermolecular dipolar interactions modulated by translational motion contribute significantly to the proton relaxation, the rotating frame spin-lattice relaxation rate (1/Tip) is a function of the square root of the spin-locking field angular frequency... [Pg.191]

Fig. 1. Magnetic field dependences of the proton spin-lattice relaxation time of water in Bioran B30 and Vycor glasses at temperatures above 27°C and below the temperature where the non-surface water freezes ( —25°C and —35°C). The solid lines represent the power law in the Larmor frequency with an exponent of 0.67 (34). Fig. 1. Magnetic field dependences of the proton spin-lattice relaxation time of water in Bioran B30 and Vycor glasses at temperatures above 27°C and below the temperature where the non-surface water freezes ( —25°C and —35°C). The solid lines represent the power law in the Larmor frequency with an exponent of 0.67 (34).

See other pages where Temperature spin-lattice relaxation times is mentioned: [Pg.673]    [Pg.173]    [Pg.223]    [Pg.363]    [Pg.1274]    [Pg.673]    [Pg.173]    [Pg.223]    [Pg.363]    [Pg.1274]    [Pg.107]    [Pg.134]    [Pg.54]    [Pg.116]    [Pg.164]    [Pg.435]    [Pg.211]    [Pg.222]    [Pg.588]    [Pg.197]    [Pg.34]    [Pg.222]    [Pg.19]    [Pg.316]    [Pg.321]    [Pg.263]    [Pg.453]    [Pg.376]    [Pg.32]    [Pg.79]    [Pg.123]    [Pg.44]    [Pg.52]    [Pg.28]    [Pg.69]    [Pg.326]    [Pg.328]    [Pg.297]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Lattice temperature

Relaxation temperatures

Relaxation times spin-lattice

Relaxation times temperature

Spin lattice

Spin lattice relaxation temperature

Spin temperature

Spin-lattice relaxation

Spin-relaxation times

Temperature spinning

Time-temperature

© 2024 chempedia.info