Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic Temperature Scales

The new international temperature scale, known as ITS-90, was adopted in September 1989. However, neither the definition of thermodynamic temperature nor the definition of the kelvin or the Celsius temperature scales has changed it is the way in which we are to realize these definitions that has changed. The changes concern the recommended thermometers to be used in different regions of the temperature scale and the list of secondary standard fixed points. The changes in temperature determined using ITS-90 from the previous IPTS-68 are always less than 0.4 K, and almost always less than 0.2 K, over the range 0-1300 K. [Pg.1214]

Accurate temperature measurements in real-life situations are difficult to make using the KTTS. Most easily used thermometers are not thermodynamic that is, they do not operate on principles of the first and second laws. Most practicable thermometers depend upon some principle that is a repeatable and single-valued analogue of temperature, and they are used as interpolation devices of practical and utilitarian temperature scales which are themselves... [Pg.396]

The KTTS depends upon an absolute 2ero and one fixed point through which a straight line is projected. Because they are not ideally linear, practicable interpolation thermometers require additional fixed points to describe their individual characteristics. Thus a suitable number of fixed points, ie, temperatures at which pure substances in nature can exist in two- or three-phase equiUbrium, together with specification of an interpolation instmment and appropriate algorithms, define a temperature scale. The temperature values of the fixed points are assigned values based on adjustments of data obtained by thermodynamic measurements such as gas thermometry. [Pg.397]

Some of tfie physical piopeities of tungsten ate given in Table 3 fuithei property data ate available (12—14). For thermodynamic values. References 5,15, and 16 should be consulted. Two values are given for the melting point. The value of 3660 K was selected as a secondary reference for the 1968 international practical temperature scale. However, since 1961, the four values that have been reported ranged from 3680 to 3695 and averaged 3688 K. [Pg.279]

The way, that the gas temperature scale and the thermodynamic temperature scale are shown to be identical, is based on the microscopic interpretation of temperature, which postulates that the macroscopic measurable quantity called temperature, is a result of the random motions of the microscopic particles that make up a system. [Pg.2]

The sensation of warmth or coldness is caused by temperature. Adding heat to a substance not only raises its temperature, but also produces changes in several other qualities. The substance expands or contracts its electric resistance changes and in the gaseous form, its pressure changes. Five different temperature scales are in use today Celsius, Fahrenheit, Kelvin, Rankine, and international thermodynamic. [Pg.5]

Carnot s research also made a major contribution to the second law of thermodynamics. Since the maximum efficiency of a Carnot engine is given by 1 -T( H, if the engine is to be 100 percent efficient (i.e., Cma = 1), Tc must equal zero. This led William Thomson (Lord Kelvin) to propose in 1848 that Tf must be the absolute zero of the temperature scale later known as the absolute scale or Kelvin scale. ... [Pg.220]

Temperature Scales A quantitative description of temperature requires the definition of a temperature scale. The two most commonly encountered in thermodynamics are the absolute or ideal gas (°A) scale and the thermodynamic or Kelvin (K) scale."... [Pg.11]

The Thermodynamic or Kelvin Temperature Scale Description of the Kelvin temperature scale must wait for the laws of thermodynamics. We will see that the Kelvin temperature is linearly related to the absolute or ideal gas temperature, even though the basic premises leading to the scales are very different, so that... [Pg.11]

We have already shown that the absolute temperature is an integrating denominator for an ideal gas. Given the universality of T 9) that we have just established, we argue that this temperature scale can serve as the thermodynamic temperature scale for all systems, regardless of their microscopic condition. Therefore, we define T, the ideal gas temperature scale that we express in degrees absolute, to be equal to T 9), the thermodynamic temperature scale that we express in Kelvins. That this temperature scale, defined on the basis of the simplest of systems, should function equally well as an integrating denominator for the most complex of systems is a most remarkable occurrence. [Pg.77]

See W. F. Giauque and D. P. MacDougall, "Experiments Establishing the Thermodynamic Temperature Scale below 1 =K. The Magnetic and Thermodynamic Properties of Gadolinium Phosphomolybdate as a Function of Field and Temperature". J. Am. Chem. Soc., 60, 376-388 (1938). [Pg.201]

The ability to measure temperature and temperature differences accurately and reproducibly is essential to the experimental study of thermodynamics. A thermometer constructed with an ideal gas as its working fluid yields temperatures that correspond to the fundamental thermodynamic temperature scale. However, such thermometers are extremely difficult to use, are not amenable to miniaturization, and are very expensive. Therefore, other means to measure temperatures that reproduce the ideal gas or thermodynamic temperature scale (Kelvin) have had to be developed. The international temperature scale represents a method to determine temperatures over a wide range with measuring devices that are easier to use than the ideal gas thermometer. The goal is to make temperature measurements that correspond to the thermodynamic temperature as accurately as possible. [Pg.617]

Approximately every twenty years, the international temperature scale is updated to incorporate the most recent measurements of the equilibrium thermodynamic temperature of the fixed points, to revise the interpolation equations, or to change the specifications of the interpolating measuring devices. The latest of these scales is the international temperature scale of 1990 (ITS-90). It supersedes the earlier international practical temperature scale of 1968 (IPTS-68), along with an interim scale (EPT-76). These temperature scales replaced earlier versions (ITS-48 and ITS-27). [Pg.617]

This volume also contains four appendices. The appendices give the mathematical foundation for the thermodynamic derivations (Appendix 1), describe the ITS-90 temperature scale (Appendix 2), describe equations of state for gases (Appendix 3), and summarize the relationships and data needed for calculating thermodynamic properties from statistical mechanics (Appendix 4). We believe that they will prove useful to students and practicing scientists alike. [Pg.687]

The second law of thermodynamics says that in a Carnot cycle Q/T = constant. This law allows for the definition of a temperature scale if we arbitrarily assign the value of a reference temperature. If we give the value T3 = 273.16K to the triple point (see Gibbs law, Section 8.2) of water, the temperature in kelvin units [K] can be expressed as ... [Pg.190]

In general, a thermometer is called primary if a theoretical reliable relation exists between a measured quantity (e.g. p in constant volume gas thermometer) and the temperature T. The realization and use of a primary thermometer are extremely difficult tasks reserved to metrological institutes. These difficulties have led to the definition of a practical temperature scale, mainly based on reference fixed points, which mimics, as well as possible, the thermodynamic temperature scale, but is easier to realize and disseminate. The main characteristics of a practical temperature scale are both a good reproducibility and a deviation from the thermodynamic temperature T which can be represented by a smooth function of T. In fact, if the deviation function is not smooth, the use of the practical scale would produce steps in the measured quantities as function of T, using the practical scale. The latter is based on ... [Pg.191]

The XVIII Conference Generale des Poids et Mesures adopts the version of the International Temperature Scale ITS-90 The ITS-90 provides die best to-date practical approximation of die thermodynamic scale and offers a reproducibility that is better than the thermodynamic scale. [Pg.192]

Consultative Committee for Thermometry creation of a mise en pratique of die definition of the kelvin The Consultative Committee for Thermometry, considering that the ITS-90 and the PLTS-2000 are internationally accepted practical temperature scales defining temperatures T90 and T2qqq that are good approximations to thermodynamic temperature T... [Pg.192]

The use of data of 4He and 3He vapour pressure which was accurately reported for T > 0.5 K was recommended. Unfortunately it was clear that also for the IPTS-68 errors (order of 10-4 K) existed in this temperature scale in comparison with the thermodynamic temperature. [Pg.194]

Techniques for accurate and reproducible measurement of temperature and temperature differences are essential to all experimental studies of thermodynamic properties. Ideal gas thermometers give temperatures that correspond to the fundamental thermodynamic temperature scale. These, however, are not convenient in most applications and practical measurement of temperature is based on the definition of a temperature scale that describes the thermodynamic temperature as accurately as possible. The analytical equations describing the latest of the international temperature scales, the temperature scale of 1990 (ITS-90) [1, 2]... [Pg.303]

Kelvin then replotted his data, this time extrapolating each graph till the volume of the gas was zero, which he found to occur at a temperature of -273.15 °C see Figure 1.5. He then devised a new temperature scale in which this, the coldest of temperatures, was the zero. He called it absolute zero, and each subsequent degree was equal to 1 °C. This new scale of temperature is now called the thermodynamic (or absolute) scale of temperature, and is also sometimes called the Kelvin scale. [Pg.22]

As the magnirnde of the heat exchanged in an isothermal step of a Carnot cycle is proportional to a function of an empirical temperature scale, the magnitude of the heat exchanged can be used as a thermometric property. An important advantage of this approach is that the measurement is independent of the properties of any particular material, because the efficiency of a Carnot cycle is independent of the working substance in the engine. Thus we define a thermodynamic temperature scale (symbol T) such that... [Pg.121]

The relationship between the thermodynamic temperature scale and the ideal gas temperature scale can be derived by calculating the thermodynamic quantities for a Camot cycle with an ideal gas as the working substance. Eor this purpose, we shall use 0 to represent the ideal gas temperamre. [Pg.122]


See other pages where Thermodynamic Temperature Scales is mentioned: [Pg.39]    [Pg.39]    [Pg.20]    [Pg.472]    [Pg.396]    [Pg.396]    [Pg.398]    [Pg.399]    [Pg.2]    [Pg.225]    [Pg.1032]    [Pg.1127]    [Pg.1089]    [Pg.13]    [Pg.63]    [Pg.77]    [Pg.659]    [Pg.670]    [Pg.892]    [Pg.154]    [Pg.474]    [Pg.120]    [Pg.121]    [Pg.123]    [Pg.125]   
See also in sourсe #XX -- [ Pg.167 , Pg.196 ]

See also in sourсe #XX -- [ Pg.167 , Pg.196 ]

See also in sourсe #XX -- [ Pg.7 , Pg.40 , Pg.68 , Pg.69 ]

See also in sourсe #XX -- [ Pg.99 , Pg.160 ]

See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Temperature Scales

Thermodynamics scaling

© 2024 chempedia.info